
Traitement et recalage d'image

Céline Meillier

meillier@unistra.fr

☑ Laboratoire ICube
300 bd Sébastien Brant
CS 10413
F-67412 Illkirch Cedex

Année universitaire 2017-2018

Organisation

9 séances de CM (2h)

- → Introduction (S1)
- \rightarrow Outils et traitements de base (S1 et S2)
- → Restauration d'image (S3)
- → Analyse d'image (S4, S5 et S6)
- → Recalage d'image (S7)

6 séances de TP Matlab (4h)

- → Initiation et outils de base sous Matlab
- → Restauration d'image
- $\rightarrow \ \mathsf{Morphologie} \ \mathsf{math\'ematique}$
- → Segmentation
- \rightarrow Recalage d'image

Examen final (2h)

→ Lundi 11 décembre (10h30 - 12h15)

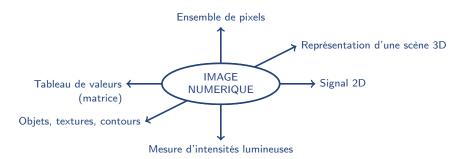
Modalité d'évaluation :

- → Partiel : 50% de la note finale (Questions sur les notions vues en cours et en TP + exercices d'application)
- \rightarrow TP : 50% de la note finale

Bibliographie

Ouvrages:

→ Digital Image Processing, 3rd Ed., Rafael C. Gonzalez and Richard E. Woods, Prentice Hall, 2008.


Cours:

- → Vincent Mazet, cours "Outils fondamentaux pour le traitement d'image", http://miv.u-strasbg.fr/mazet/ofti
- → Vincent Noblet, cours "Traitement d'images" TICS2A, http://icube-miv.unistra.fr/fr/index.php/Traitement_d'images_TICS2A

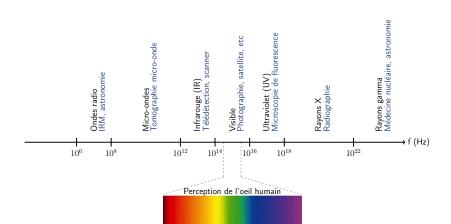
Introduction - Qu'est-ce qu'une image?

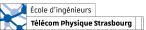
Introduction - Qu'est-ce qu'une image?



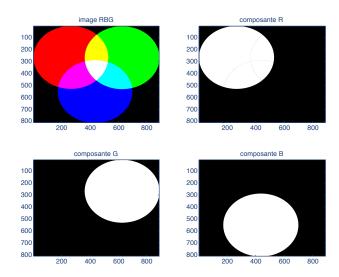
Introduction - Définition

Définition - Larousse


n.f. Reproduction d'un objet matériel donnée par un système optique et, en particulier, par une surface plane réfléchissante ou un miroir.


Optique. Ensemble de points ou d'éléments représentatifs de l'apparence d'un objet, formés à partir du rayonnement électromagnétique émis, réfléchi, diffusé ou transmis par l'objet.

Spectre électromagnétique


Introduction

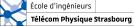
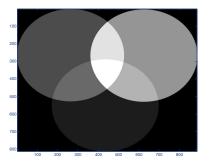


Image RGB


Introduction

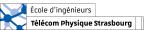
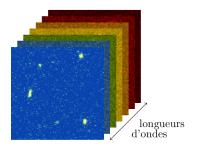
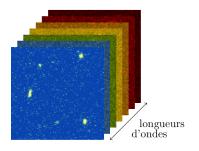

Mélange R&B, mélange R&V, mélange B&V.

Image N&B



- → Mesure de luminance = quantité de lumière perçue par le capteur.
- → Pas d'information de couleur : intégration (moyenne) de toutes les fréquences sur une portion du spectre électromagnétique plus ou moins large.

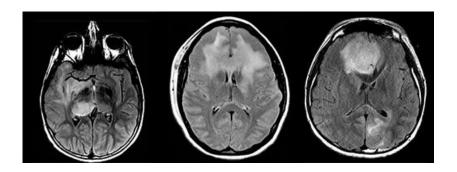

Image multispectrale

Introduction

- → Plusieurs dizaines/centaines de bandes spectrales fines.
- \rightarrow Information spatiale + information spectrale.

Image multispectrale

- → Plusieurs dizaines/centaines de bandes spectrales fines.
- ightarrow Information spatiale + information spectrale.

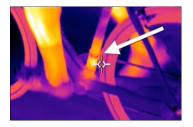

Exemples d'applications :

- → astronomie (sur tout le spectre électromagnétique),
- → télédétection (satellitaire, avion, drone, etc dans le domaine du visible et infrarouge),
- → détection de contrefaçons de médicament (infrarouge).

Onde radio - IRM

IRM:

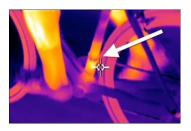
- → Image 3D : imagerie en coupe
- → Exemple d'utilisation : localisation de tumeurs, d'hernies discales, etc



Infrarouge - image thermique

Caméra thermique :

- → Utilisation lors des courses cyclistes (caméra développée par le CEA)
- → Détection des changements de température


Présence d'un moteur dans le cadre

Infrarouge – image thermique

Caméra thermique :

- → Utilisation lors des courses cyclistes (caméra développée par le CEA)
- → Détection des changements de température

Présence d'un moteur dans le cadre

Autres exemples d'utilisation :

- → Lunette de vision nocturne.
- → Diagnostic énergétique des bâtiments (fuite de chaleur).

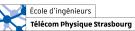
Rayons X – Radiographie

- → Les différents tissus n'interagissent pas de la même façon avec les rayons X.
- → Changement d'intensité = changement de milieu (détection de fellures, fractures, etc)

Formation d'image par ondes sonores

Onde sonore : Propagation dans un milieu matériel d'une déformation mécanique (compression-dilatation).

Exemples d'utilisation:


- → Echographie
- → Imagerie des sols
- → Contrôle de pièces usinées

Représentation et interprétation de l'image numérique

A différents niveaux de représentation ...

- $\rightarrow \ \mathsf{Tableau} \ \mathsf{de} \ \mathsf{valeurs/pixels}$
- $\rightarrow \ \mathsf{Ensembles} \ \mathsf{de} \ \mathsf{pixels}$
- $\rightarrow \ \mathsf{Objets}$

Représentation et interprétation de l'image numérique

A différents niveaux de représentation ...

- → Tableau de valeurs/pixels
- → Ensembles de pixels
- \rightarrow Objets

... correspondent différents traitements pour l'analyse de l'image :

- \rightarrow Histogramme, statistiques
- → Segmentation, détection de contours,
- ightarrow Traitements haut niveau (reconnaissance de formes, de caractères, de visages, etc.., recalage d'images)

A suivre ...

Outils et traitement de base : formation d'une image numérique