Random Forests on Hierarchical Multi-Scale Supervoxels for Liver Tumor Segmentation in Dynamic Contrast-Enhanced CT Scans

P.-H. Conze¹, V. Noblet¹, F. Rousseau², F. Heitz¹, R. Memeo³ and P. Pessaux³

¹ ICube, University of Strasbourg, CNRS, Fédération de Médecine Translationnelle de Strasbourg, France | conze@unistra.fr

² Institut Mines-Télécom, Télécom Bretagne, INSERM, LATIM, Brest, France

³ Pôle Hépato-Digestif, Institut Hospitalo-Universitaire de Strasbourg, France

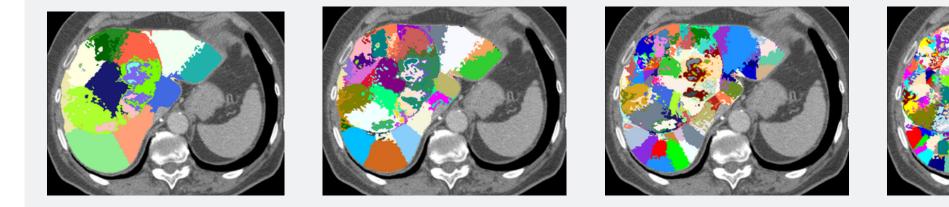
Context

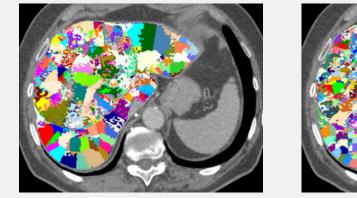
We tackle **multi-label tissue classification** covered through supervised ensemble learning towards accurate **tumor segmentation** :

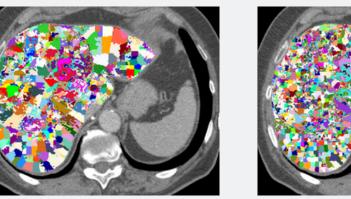
- high diversity in shape, location and size
- wide appearance heterogeneity
- severe class overlap in feature space ambiguous boundaries

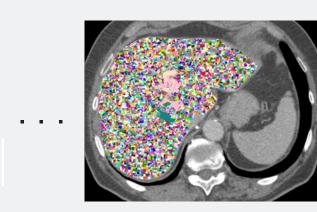
Contributions

Hierarchical multi-scale supervoxel representation | following [3]

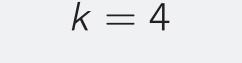


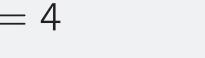






k = 3





Recent approaches capture long-range spatial context but are limited in their ability to deal with spatial adaptivity & appearance heterogeneity

Our motivation. Enable random forest (RF) [1] to find itself the best data sampling by:

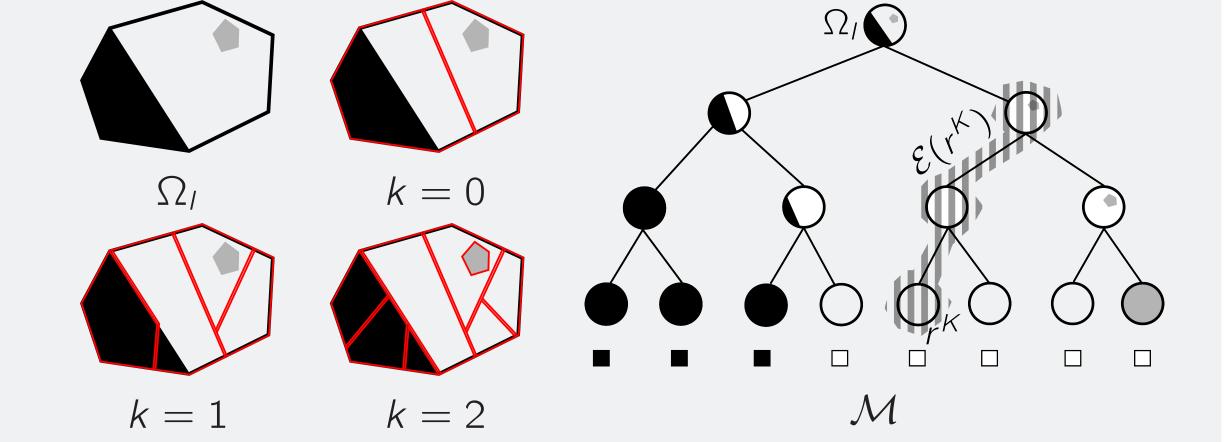
- combining RF and **hierarchical multi-scale** tree resulting from recursive supervoxel decomposition
- describing each leaf supervoxel as a sequence of supervoxels belonging to its ascendant hierarchy

Application

Clinical management of *hepatocellular carcinoma* (HCC) [2], most common type of liver cancer :

- requires the segmentation of healthy liver, tumoral active and necrotic tissues
- from dynamic contrast-enhanced (DCE) CT scans: HCC characterized by arterial enhancement followed by venous washout in response to contrast agent injection

- liver area Ω_l decomposed into a set of K+1 partitions \mathcal{P}^{k}
- \mathcal{P}^k is a collection of SLIC [4] compact 3D supervoxels $\{\mathbf{r}_i^k\}$ such that $\mathbf{r}_i^k \cap \mathbf{r}_{i\neq i}^k = \emptyset$ and $\bigcup_i \mathbf{r}_i^k = \Omega_i$
- $\{\mathcal{P}^k\}$ encoded in the layers of a multi-resolution tree $\mathcal{M} = \{\mathcal{M}^k\}$



k = 5

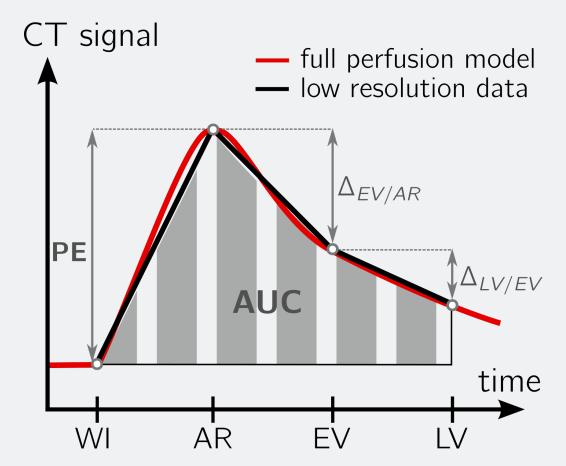
- \mathcal{M}^k maps each supervoxel $\mathbf{r}_i^k \in \mathcal{P}^k$ to a set of child supervoxels $\{\mathbf{r}_i^{k+1}\} \subset \mathcal{P}^{k+1}$ s.t. $\mathbf{r}_i^k = \bigcup_i \mathbf{r}_i^{k+1}$

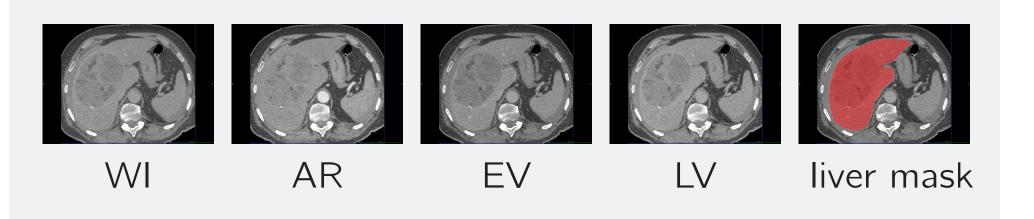
Hierarchical multi-scale supervoxel-based RF | extends [5] from single to multi-scale since intrinsic tissue properties may emerge at different scales for different tissues

(1) Build hierarchical multi-scale tree \mathcal{M}

(2) Assign visual features $\theta(\mathbf{r}^k)$ to all supervoxels \mathbf{r}^k in each partition \mathcal{P}^k with $k \in \{0, \dots, K\}$

Features	Nb
mean intensity + std dev.	4+4
mean gradient magnitude + std dev.	4+4
peak enhancement (PE)	1
inter-phase diff. $\Delta_{EV/AR}$, $\Delta_{LV/EV}$	2
	mean intensity + std dev. mean gradient magnitude + std dev. peak enhancement (PE)





area under enhancement curve (AUC)

(3) Associate to each supervoxel \mathbf{r}^{K} at finest scale K all the supervoxels of decreasing scale belonging to its ascendant hierarchy including itself: $\mathcal{E}(\mathbf{r}^{K}) = {\mathbf{r}^{k}}_{k \in [0,...,K]}$

(4) Define a new feature vector $\gamma(\mathbf{r}^K)$ associated to each $\mathbf{r}^K \in \mathcal{P}^K$ as the concatenation of all visual features assigned to supervoxels of $\mathcal{E}(\mathbf{r}^{K}) \Rightarrow$ powerful multi-scale description of finest scale supervoxels

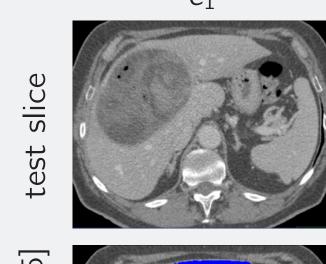
(5) Tissue classification based on supervoxels of scale K carried out via standard RF [1]

Results

Dataset. 8 examinations $\{e_1, \ldots, e_8\}$ stemming from patients with HCC with 6 equally reparted 2D axial slices labeled by 4 experts in hepato-digestive surgery.

Experiments. Comparison between hierarchical multi-scale supervoxel-based RF (hSLIC-RF) and singlescale supervoxel-based RF [5] (sSLIC-RF) with optimal shared and e_i -dependent supervoxel resolutions.

methods	optimized sSLIC-RF [5]		hSLIC-RF
resolution	shared	<i>e</i> _i -dependent	multi-scale
DICE _{activ}	76.5 ± 10.1	78.7 ± 9.18	$\textbf{80.4} \pm 8.81$
DICE _{necro}	85.3 ± 12.5	86.9 ± 9.51	86.9 ± 10.5
DICEprcm	94.3 ± 4.12	94.9 ± 3.85	95.5 ± 3.56



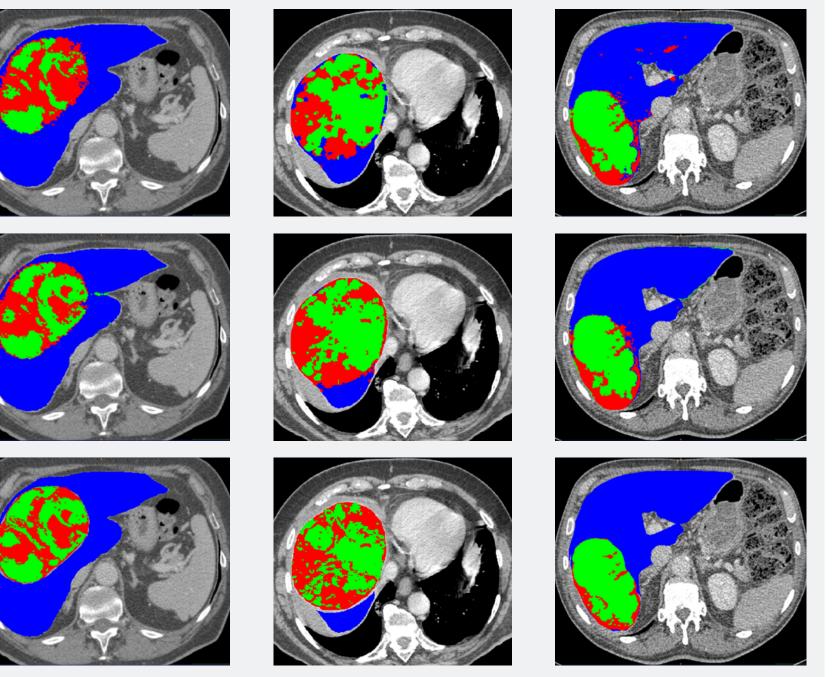
Ċ

SL

RF

Ċ

hSL.



Further work

- multi-examination training to make our strategy becoming fully automatic
- HCC management \Rightarrow correlation between tumor necrosis rate and survival rates
- longitudinal liver tumor study
- extension to other tumor types, organs and modalities

References

DICE _{tumor}	88.9 ± 8.51	89.4 ± 6.12	91.0 ± 6.99

- significant impact of scale selection in singlescale context
- hSLIC-RF outperforms the upper bound reachable by sSLIC-RF \Rightarrow confirms the benefits of our adaptive data sampling scheme
- stronger spatial regularization inherited from the capacity of multi-scale SLIC supervoxels to adhere to image boundaries

- [1] Breiman L. Random Forests. *Machine learning*, 45(1):5-32, 2001.
- [2] Forner, A., Llovet, J. M and Bruix, J. Hepatocellular carcinoma. *The Lancet*, 2012
- [3] Geremia, E. and Menze, B. H and Ayache, N. Spatially adaptive random forests. IEEE International Symposium on Biomedical Imaging, 2013, 1344–1347
- [4] Radhakrishna A. et al., SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(11):2274-2282, 2012.
- [5] Conze, P.-H., Rousseau, F., Noblet, V., Heitz, F., Memeo, R. and Pessaux, P. Semi-automatic Liver Tumor Segmentation in DCE-CT Scans Using Random Forests and Supervoxels. *Machine Learning in Medical* Imaging, 2015, 212-219, 9352