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Bayesian Fusion of Multi-band Images

Panchromatic Image (50cm)
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Bayesian Fusion of Multi-band Images

Multispectral Image (2m)
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Pansharpened Image (50cm)
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Bayesian Fusion of Multi-band Images
L Context

Hyperspectral Imagery

Hyperspectral Images
» Spectral: same scene observed at different wavelengths
» Spatial: pixel represented by a vector of hundreds of measurements.

Hyperspectral Cube
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Bayesian Fusion of Multi-band Images
Context

Problem Statement

Figure: (a) Hyperspectral Image (size: 99 x 46 x 224, res.: 80m x 80m) (b) Panchromatic
Image (size: 396 x 184 x 1 res.: 20m x 20m) (c) Target (size: 396 x 184 x 224 res.: 20m x 20m)

Name AVIRIS (HS)" | SPOT-5 (MS) | Pleiades (MS) | WorldView-3 (MS)
Res. (m) 20 10 2 1.24
# bands 224 4 1 8

TR. O. Green et al,, “Imaging spectroscopy and the airborne visible/infrared imaging
spectrometer (AVIRIS),” Remote Sens. of Environment, 1998.
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Bayesian Fusion of Multi-band Images
Context

Forward model

Yy = XBS + Ny, Yy = RX + Ny

X € R™*": full resolution unknown image

Yu € R™*M and Yy € R™*": observed HS and MS images

B € R™"™: cyclic convolution operator acting on the bands

S € R™™: downsampling matrix

R € R™*™M: spectral response of the MS sensor

N € R™ XM and Ny € R™*™: HS and MS noises, assumed to
be a band-dependent Gaussian sequence

vV VvV vy vy VvYyy

10 20 30 40

Bansd0
(a) Kernel of B (b) R (Spectral blurring)
(Spatial blurring)
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Bayesian Fusion of Multi-band Images
L Context

Reparameterization

Dimensionality reduction

Projection of the data X in a lower-dimensional subspace (R™): X = HU,
where H is an my x my projection matrix.

2J. M. Bioucas-Dias et al., “Hyperspectral subspace identification,” IEEE Trans. Geosci. and
Remote Sens., vol. 46, no. 8, pp. 2435-2445, 2008.
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Bayesian Fusion of Multi-band Images
L Context

Likelihoods

» Likelihood of the observations®

YulU, 82 ~ MN m, .m(HUBS, diag gsﬁ) Am)
Yum|U, SI%/I ~ MNn,\,n(RHUu diag (sM) +In)

T T
where s = [sﬁm...,sﬁ)mk] and sg, = {sf,m,...,sf,lm} :

» Joint likelihood
f (Y, Ym|U, %) = (Yu|U, s3) f (Ym|U, s5)

with % = {s3, 5%}

3The probability density function of a matrix normal distribution is defined by

exp (_% tr [2;1 X-—M)T= (X - M)])
(2m)"P/2| S| "/2 |5, |P/2

P(XIM, X, 3¢) =
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Bayesian Fusion of Multi-band Images
L Context

Outline

Context

Gaussian prior modeling
Hierarchical Bayesian model
Block Gibbs sampler
Accelerating with optimization method

Dictionary-based sparse prior modeling
Sparse Regularization
Alternate optimization scheme
Fast fUsion based on solving a Sylvester Equation (FUSE)
From maximum likelihood estimator...
... to maximum a posteriori estimator

Conclusion

JYT Bayesian Fusion of Multi-band Images 10 /76



Bayesian Fusion of Multi-band Images
Gaussian prior modeling

Outline

Gaussian prior modeling
Hierarchical Bayesian model
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Bayesian Fusion of Multi-band Images

LGaussian prior modeling

Parameter Priors
» Pixel vectors in the lower dimensional subspace: independent
conjugate Gaussian priors
UlU, = ~ MN (U, 2, 1,)

» Noise variances: independent conjugate inverse-gamma priors

SHZ&SM€|V v ~IG (2 ;)

Flexible distribution whose shape can be adjusted from (v, )

Assumptions

» U : fixed using an interpolated hyperspectral image (obtained
using splines) projected onto the subspace

» v: fixed (disappears later)
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Bayesian Fusion of Multi-band Images
LGaussian prior modeling

Hyperparameter Prior

Hyperparameter vector: ® = {X,~}

» Hyperparameter X : Inverse-Wishart (ZW) distribution
3~ W)

where ¥ and 7 are fixed to provide a non-informative prior

» Hyperparameter ~: Jeffreys’ non-informative prior

() %hm )

JYT Bayesian Fusion of Multi-band Images 13 /76



Bayesian Fusion of Multi-band Images

LGaussian prior modeling

Joint Posterior

Using Bayes theorem, the joint posterior distribution is
f(0,®|Yu, Ynm) o< f(Yu, Yu[0) f (6| D) f (D)

where
» unknown parameters: 8 = {U, s3, s2 }
» unknown hyperparameters: ® = {3, ~}

How can we estimate 8 and ®?

» Marginalize the hyperparameter ~

» Sample according to the joint posterior f (U, 82, %[Yy, Yu) by
using a block Gibbs sampler, which can be easily implemented
since all the conditional distributions associated with
f (U, s?,%|Yy, Yu) are simple.
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Bayesian Fusion of Multi-band Images
Gaussian prior modeling

Outline

Gaussian prior modeling

Block Gibbs sampler
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Bayesian Fusion of Multi-band Images
LGaussian prior modeling

Block Gibbs sampler*

for t =1 to Nyc do
% Sampling the image covariance matrix
Sample = from fA(Z|UE, 27 i Yy)
% Sampling the multispectral noise variances
for¢=1to n>)
Sample sy, from f(sZ ,|U, Yu),
end for
% Sampling the hyperspectral noise variances
for/=1to ms\
Sample s, from f(sH€|U Yu),
end for
% Sampling the high-resolved image
Sample U using a Hamiltonian Monte Carlo algorithm
end for

4Q. Wei et al., “Bayesian fusion of multi-band images,” IEEE J. Sel. Topics Signal Process., vol.
9, no. 6, pp. 1117-1127, Sept. 2015.
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Bayesian Fusion of Multi-band Images

LGaussian prior modeling

JYT

Conditional Distributions

» Covariance matrix of the image X

2|u7 SZ,YH7YM ~
mymy )
<‘I’+ > (=) '—uﬂ)),n+n>

» Noise variance vector s2

(1Y — HUBS 7|
2’ 2

SI?I,AU’ YH 2 Ig

(¥ — RHUJZ |
2’ 2

S]%/[7€|U7YH I Ig
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Bayesian Fusion of Multi-band Images
LGaussian prior modeling

JYT

Conditional Distributions (Cont.)

» Highly-resolved image U

—log f(U[Z, 82, Y, Yar) = J[Ay° ? (Yy — HUBS) |2+
E”AM (Yu — RHU) 2+ 3272 (U— ) 2+ C

» Not a matrix normal distribution but a normal distribution in vector
form: huge covariance matrix
» Very difficult to draw samples directly from the conditional

distribution w.r.t. U
» A Hamiltonian Monte Carlo method® is used to sample this high
dimensional Gaussian distribution.

» Other techniques, such as PO, is also possible.

5Neal, Radford M. “MCMC using Hamiltonian dynamics.” Handbook of Markov Chain Monte
Carlo 2, 2011.
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Bayesian Fusion of Multi-band Images
Gaussian prior modeling

Hamiltonian Monte Carlo Methods

Classical Metropolis-Hastings moves
» Classical proposal: random walk
» Accept/reject procedure
Can be inefficient for sampling large vectors (low acceptance rate and mixing
properties)
Deterministic gradient based methods
» Well adapted to update vector/matrix elements simultaneously
» Local behavior of a cost function

Hamiltonian Monte Carlo methods

» Consideration of the local curvature of the target density to build an
accurate proposal distribution for sampling vector/matrix elements
simultaneously
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Bayesian Fusion of Multi-band Images
LGaussian prior modeling

Wald’s protocol

Hyperspectral
reference X

P N

Blurring and Multispectral
downsampling spectral response

A4 A4
Observed hyper- Observed multi-
spectral image Yy spectral image Yy

\ P

Multiband
fusion approach

| Fused image X |
v

Quality measures | «———

v

©
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Bayesian Fusion of Multi-band Images
Gaussian prior modeling

Qualitative Results (AVIRIS dataset)

Data

Fusion

RMSE

(d) MAP[Hardie2004] (e) Wavelet MAP[Zhang2012]
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Bayesian Fusion of Multi-band Images

LGaussian prior modeling

Quantitative Performance Measures

» RMSE/RSNR (Root Mean Square Error): a similarity measure
between the target image X and the fused image X

o 1 &
RMSE(X. %) = X - X|

X %) — log 1 IXIZ
RENS 29 = g nmy RMSE

The smaller RMSE/larger RSNR, the better the fusion quality.

» SAM (Spectral Angle Mapper): spectral distortion between the
actual and estimated images

N Xn, X
SAM(Xp, X;) _arccos< (Xn, Xn) )

([ Xn |21 Xnl|2

The overall SAM is obtained by averaging the SAMs computed
from all image pixels. The smaller the absolute value of SAM, the
less important the spectral distortion.
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Bayesian Fusion of Multi-band Images

LGaussian prior modeling

Quantitative Performance Measures

» UlQI (Universal Image Quality Index): related to the correlation,

luminance distortion and contrast distortion of the estimated
image w.r.t. the reference image. The UIQI between two images
aandais ,

4UagMaMé
(05 + 0%)(1g + 13)
where (14, 113, 05, 05) are the sample means and variances of a

and 4, and 02, is the sample covariance of (a, &). The range of
ulQl is [-1,1]. The larger the UIQI, the better the fusion result.

DD (degree of distortion): DD between two images X and X is
defined as

UIQI(a,a) =

DD(X, X) = [[vec(X) — vec(X)|1.

nmy

The smaller DD, the better the fusion.
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Bayesian Fusion of Multi-band Images

LGaussian prior modeling

Quantitative Performance Measures

» ERGAS The relative dimensionless global error in synthesis

(ERGAS) calculates the amount of spectral distortion in the
image. This measure of fusion quality is defined as

1 | 1 & /RMSE())
ERGAS = 100 x dZ\J ,,TZ ()

> i

where 1/d? is the ratio between the pixel sizes of the MS and HS
images, p; is the mean of the ith band of the HS image, and m,,
is the number of HS bands. The smaller ERGAS, the smaller the
spectral distortion.
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Bayesian Fusion of Multi-band Images

LGaussian prior modeling

Quantitative Results (AVIRIS dataset)

Table: Performance of HS+MS fusion methods in terms of: RSNR (db), UIQlI,
SAM (deg), ERGAS and DD(x1072) (AVIRIS dataset).

Methods |RSNR| UlQlI |SAM|ERGAS| DD |Time(s)
MAP® [23.33(0.9913|5.05| 4.21 [4.87| 1.6

Wavelet 7 | 25.53 |0.9956|3.98 | 3.95 |3.89| 31

Proposed| 26.74 |0.9966|3.40 | 3.77 |3.33| 530

Advantages

» Samples generated by the proposed method can be used to
compute uncertainties about the estimates (confidence interval)

» Generalization to more complex problems (non-Gaussianities,
nonlinearity, etc)

» Noise variance estimation

SHardie et al., “Application of the Stochastic Mixing Model to Hyperspectral Resolution
Enhancement,” IEEE Trans. Image Process., vol. 13, no. 9, Sept. 2004.

7Zhang et al., “Noise-Resistant Wavelet-Based Bayesian Fusion of Multispectral and
Hyperspectral Images,” IEEE Trans. Geosci. and Remote Sens., vol. 47, no. 11, Nov. 2009.
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Bayesian Fusion of Multi-band Images
LGaussian prior modeling

Noise Variance Estimation

——Estimation
—Actual

Noise Variances

20 40 60 80 100 120 140 160
HS bands

——Estimation
—Actual

Noise Variances
=
o

1 2 3 5 6 7

4
MS bands
Figure: Noise variances and their MMSE estimates. (Top) HS image.
(Bottom) MS image.

» Good estimation performance
» Track the variations of the noise variances within tolerable
discrepancy
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Bayesian Fusion of Multi-band Images
Gaussian prior modeling

Forward model

Yi = XBS + Ny, Yy = RX + Ny

X € R™*": full resolution unknown image

Yy € R™ XM and Yy € R™*™: observed HS and MS images

B € R™": cyclic convolution operator acting on the bands

S € R™™: downsampling matrix

R € R™*™M: gpectral response of the MS sensor

N € R™ XM and Ny € R™ %™ HS and MS noises, assumed to
be a band-dependent Gaussian sequence

vV VVYy VvVVvYyy

10 20 30 40

B(;\F‘Isdo
(a) Kernel of B (b) R (Multispectral)
(Hyperspectral)

JYT Bayesian Fusion of Multi-band Images 27 /76



Bayesian Fusion of Multi-band Images
Gaussian prior modeling

Outline

Gaussian prior modeling

How to proceed when R is unknown?
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Bayesian Fusion of Multi-band Images
LGaussian prior modeling

Block Gibbs sampler with unknown R

for t = 1 to Ny do
% Sampling the image covariance matrix
Sample B from f(Z|UE, 27 vy Yy)
% Sampling the multispectral noise variances
for/=1to n>)
Sample s from f(sg; U1, Yy),
end for
% Sampling the hyperspectral noise variances
for/=1tom
Sample s 2(t5\from F(s3., /U, Yy),
end for
% Sampling the pseudo spectral response
Sample R from f(RIUC-1, 2,7 yy,)8
% Sampling the high-resolved image
Sample U using a Hamiltonian Monte Carlo algorithm
end for

8Q. Wei et al., “Bayesian fusion of multispectral and hyperspectral images with unknown sensor
spectral response”, in ICIP, Paris, France, Oct. 2014.
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Bayesian Fusion of Multi-band Images
Gaussian prior modeling

(a) MAP (b) Wavelet MAP  (c) MCMC  with (d) MCMC with un-

known R known R
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Bayesian Fusion of Multi-band Images
LGaussian prior modeling

Quantitative fusion results

Table: Performance of the compared fusion methods: RSNR (in dB), UIQl,
SAM (in degree), ERGAS, DD (in 10~2) and Time (in second)(AVIRIS

dataset).
Methods RSNR| UIlQl |SAM |ERGAS| DD | Time
MAP 16.655|0.9336|5.739| 3.930 |2.354| 3
Wavelet MAP 19.501|0.9626|4.186| 2.897 |1.698| 73

MCMC with known R (21.913|0.9771|3.094| 2.231 |1.238| 8811
MCMC with mismatched R®|21.8040.9764/3.130| 2.260 |1.257| 8388
MCMC with unknown R |21.897(0.9769(3.101| 2.234 |1.244({10471

9FSNR= 10dB.
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Bayesian Fusion of Multi-band Images
Gaussian prior modeling

Outline

Gaussian prior modeling

Accelerating with optimization method
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Bayesian Fusion of Multi-band Images
LGaussian prior modeling

The negative logarithm of the joint posterior distribution p (6, 2|Y) is
given as

L(U,s2, %)
= —logp(6,X%]Y)

n
—logp (Yu|6) —log p (Yu|6) — I; log p (u)|X)

- Imé logp (312{,/') 2 log p (Sf,w-) —logp(x)-C

» MAP estimator: minimizing the function L(U, s?, 3) with respect
to U, s? and X iteratively

» use a Block coordinated descent (BCD) algorithm 10

10Q. wei et al., “Bayesian fusion of multispectral and hyperspectral images using a block
coordinate descent Method”, in IEEE GRSS Workshop on Hyperspectral Image and Signal
Processing: Evolution in Remote Sensing (WHISPERS), Tokyo, Japan, Jun. 2015.
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Bayesian Fusion of Multi-band Images

LGaussian prior modeling

Block Coordinated Descent for HS and MS image fusion

Input: YH, YM, ﬁ'b\, B, S, R, Sg, >0
» H< PCA(Yu,my); /+ Subspace transform matrix

for t=1,2,... to stopping rule do
Ut:argmuinL(U,Stz_1,Et_1); /* Optimize w.r.t. U

s?:argmian(Ut,Sz,Et_ﬂ; /% Optimize w.r.t. &°
S

Et:arngiJnL(U;,s?,E); /+* Optimize w.r.t. X
end

Output: X = HU (High resolution HS image)

*/
*/
*/

Remarks
The convergence is guaranteed'".

"D, p. Bertsekas. Nonlinear Programming. Athena Scientific Belmont, 1999.
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Bayesian Fusion of Multi-band Images

LGaussian prior modeling

Minimization w.r.t. U

Using the linear model, dimensionality reduction, fusing the HS and
MS images can be formulated as finding U minimizing the cost
function

1 1
Ly(U) = 3] Ay (Yu — HUBS) ||} + }[|Ay® (Yu — RHU) [}

+3[1272 (U~ po) |2

» First two terms: data fidelity terms for the HS+MS images
(likelihoods)

» Last term: penalty ensuring appropriate regularization (prior)

Difficulties

» Large dimensionality of U
» Diagonalization of the linear operators H(-)BS not possible
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Bayesian Fusion of Multi-band Images
LGaussian prior modeling

Alternating Direction Method of Multipliers (ADMM)

Idea: transform the unconstrained optimization with respect to U into a
constrained one via a variable splitting “trick”, and then attack this
constrained problem using an augmented Lagrangian (AL) method'?

» Splittings: H{ =UB,H, =Uand H; = U
» Respective scaled dual variable: G, G2, G3

L(U.Hi,Hp, Hs, Gy, Gz, Gs)

1 1
- EHAH;(YH—HH1S)Hi+ £[|UB —Hi - Gu[Z |+

At O RHHZ £ [ AU~ H, — G 2]+

1

*||2 (o — Ha) ||} +| 51U~ Ha — Ga 7

2\, Afonso et al., “An augmented Lagrangian approach to the constrained optimization
formulation of imaging inverse problems,” IEEE Trans. Image Process., vol. 20, no. 3,pp. 681-695,
2011.
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Bayesian Fusion of Multi-band Images
LGaussian prior modeling

Alternating Direction Method of Multipliers (ADMM)

Idea: transform the unconstrained optimization with respect to U into a
constrained one via a variable splitting “trick”, and then attack this
constrained problem using an augmented Lagrangian (AL) method

» Splittings: H{ =UB,H, =Uand H; = U
» Respective scaled dual variable: G, G2, G3

L(U,H¢,H2, H3, Gy, Gz, G3) upsampling

1, . -1
= | SlAF (Ve - HHS) |2+ LfuB - H -G |+

2||A (Y — RHH) £+ 5|U — Hp — Gel [} +

*HE (pu — Ha) HF MHU Hs — G3||F

JYT Bayesian Fusion of Multi-band Images 37 /76



Bayesian Fusion of Multi-band Images
LGaussian prior modeling

Alternating Direction Method of Multipliers (ADMM)

Idea: transform the unconstrained optimization with respect to U into a
constrained one via a variable splitting “trick”, and then attack this
constrained problem using an augmented Lagrangian (AL) method

» Splittings: H{ =UB,H, =Uand H; = U
» Respective scaled dual variable: G, G2, G3

L(U,H{,H2,H;3, Gy, G2, Gs3) ‘ spectral unmixing‘

Vg o=L
= S[lARE(Yu—HHiS)[Z + ZUB —H, — Gy +

1 _1
A (Y~ RHHG)[2 + 20—, G2+

*HE (pu —Hs) HF MHU Hs — G3||F
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Bayesian Fusion of Multi-band Images
LGaussian prior modeling

Alternating Direction Method of Multipliers (ADMM)
Idea: transform the unconstrained optimization with respect to U into a
constrained one via a variable splitting “trick”, and then attack this
constrained problem using an augmented Lagrangian (AL) method

» Splittings: H{ =UB,H, =Uand H; = U

» Respective scaled dual variable: G, G2, G3

L(U,Hy,Hyz, H3, G, Gy, G3)

Vg o=L
= S[lARE(Yu—HHiS)[Z + ZUB —H, — Gy +

1 _1
2 A (Yas — RHH)[2 2 U — W, — G |2+

1
5= (mu —Ho) 2+ gHU —Hs - G|}
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Bayesian Fusion of Multi-band Images
Gaussian prior modeling

=]

(a) MAP (b) Wavelet MAP
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Bayesian Fusion of Multi-band Images
LGaussian prior modeling

Table: Performance of the compared fusion methods: RSNR (in dB), UlQl,

SAM (in degree), ERGAS, DD (in 1072) and time (in second) (AVIRIS

dataset).
Methods RSNR | UlQl SAM | ERGAS DD | Time
MAP 23.14 | 0.9932 | 5.147 | 3.524 | 4.958 3
Wavelet MAP | 24.91 | 0.9956 | 4.225 | 3.282 | 4.120 72
MCMC 25.92 | 0.9971 | 3.733 | 2.926 | 3.596 | 6228
Proposed 25.85 | 0.9970 | 3.738 | 2.946 | 3.600 96

» Promising results for the considered quality measures
» Significant reduction in computation time: Save a lot of time!

JYT Bayesian Fusion of Multi-band Images
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Bayesian Fusion of Multi-band Images
Dictionary-based sparse prior modeling

Outline

Dictionary-based sparse prior modeling
Sparse Regularization
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Bayesian Fusion of Multi-band Images
L Dictionary-based sparse prior modeling

Sparse Regularization

Motivation
Self-similarity property of natural image patches

patches
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Bayesian Fusion of Multi-band Images
Dictionary-based sparse prior modeling

Remote Sensing Image

patches

JYT Bayesian Fusion of Multi-band Images 44 / 76



Bayesian Fusion of Multi-band Images
Dictionary-based sparse prior modeling

Sparse Regularization

The patches of the target image U can be sparsely approximated on
an over-complete dictionary (with columns referred to as atoms).

FI}

!
.
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Bayesian Fusion of Multi-band Images
L Dictionary-based sparse prior modeling

Penalized inverse problem

Based on the linear model and dimensionality reduction, fusing the
HS and MS images can be formulated as the following inverse
problem:

1, —1
min ||A (Y — HUBS) £ + 5| A * (Y — RHU)|[Z + Ao(U) .
——

HS data term MS data term rigt‘]'zz'ﬁ‘;"

In p(Yu|U) oIn p(Ym|U)
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Bayesian Fusion of Multi-band Images
L Dictionary-based sparse prior modeling

Sparse Regularization
Regularizer

4(U) = 1D (D.A) |

Separating each band of the target image leads to

oY) = 2Zuu P @A)

» U, € R"is the ith band (or row) of U € R™*"

» D; € R™*™ s the dictionary dedicated to the ith band of U (n, is
the patch size and n, is the number of atoms) and
D= [Dh"' ’Dﬁu]

> A; € R™*™« is the jth band’s code (1, is the number of patches
associated with the ith band) and A = [Ay, - , Az, |

» P(.) is a linear operator that averages the overlapping patches of
each band to restore the target image
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Bayesian Fusion of Multi-band Images
Dictionary-based sparse prior modeling

~ How can we obtain the
dictionary D and the code A?
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Bayesian Fusion of Multi-band Images
L Dictionary-based sparse prior modeling

JYT

Dictionary Learning and Sparse Coding

Dictionary Learning

Learn' the set of over-complete dictionaries D = Dy, -+ , D, |:

applying a DL algorithm on the rough estimation of U (constructed from the
MS and HS images)

» K-SVD method
» Online Dictionary Learning (ODL) method

Sparse Coding

» Orthogonal Matching Pursuit (OMP): to estimate the sparse code A;
(with nmax coefficients) for each band U;

» Support (©; ¢ N2,i=1,.-.,m): The positions of the non-zero
elements of the code A; are also identified

13M. Elad et al., “Image denoising via sparse and redundant representations over learned
dictionaries,” IEEE Trans. Image Process., vol. 15, no. 12, pp. 3736-3745, 2006.

Bayesian Fusion of Multi-band Images 49 / 76



Bayesian Fusion of Multi-band Images

L Dictionary-based sparse prior modeling

JYT

Re-estimation of the sparse code

Inspired by hierarchical models frequently encountered in Bayesian inference,
we propose to include the code A within the estimation process.

4(U,A) = 2Zuu,— (DA 2+ palJA], NP haro

where ||.||o is the ¢y counting function (or ¢ norm) and p. is a regularization
parameter.

By fixing the supports €2;, the ¢, norm reduces to a constant. Hence,

13
¢(U7A) = > Z HU, - P (D,A,) Hi_ s.t. Aj’\QI. =0

i=1

where Aj\q, = {Ai(l,k) | (I, k) & 2}
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Bayesian Fusion of Multi-band Images

L Dictionary-based sparse prior modeling

Final Optimization Problem

Joint optimization with respect to U and A

ralp L(U,A) =

n|—=

~3(Yy — HUBS)||2 + 1||AZ? Yy — RHU|?
|| H ( H )”FJF2|| M 'M ||F+

A
% . : (HU, — 'P(D,‘A,‘) Hi.) , S.t. A/'7\Q’. =0

Bl

Solution

» Solved by minimizing w.r.t. U and A alternatively
» Each sub-problem is strictly convex
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Bayesian Fusion of Multi-band Images
Dictionary-based sparse prior modeling

Outline

Dictionary-based sparse prior modeling

Alternate optimization scheme
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Bayesian Fusion of Multi-band Images

L Dictionary-based sparse prior modeling

JYT

Optimization with respect to U

LY = FAu" (Y~ HUBS) 2+ Ay (Yo~ RHU) 2+

'i (Ju - P @A)|2).

Difficulties

» Large dimensionality of U
» Diagonalization of the linear operators H(-)BS and P(-) not possible

Solution
Alternating Direction Method of Multipliers (ADMM)
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Bayesian Fusion of Multi-band Images

L Dictionary-based sparse prior modeling

JYT

Optimization with respect to A

Optimization with respect to A; (i = 1,--- , my) conditional on U;

min||U; — P(D/A)|7 st. Ayg, =0

Remarks

» The optimization with respect to A; considers only the non-zero
elements of A;, denoted as A; o, = {Ai(l, k) | (I, k) € Q;}

» Standard least square (LS) problem which can be solved analytically
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Alternate Optimization Scheme'

Input: YH, YM, B7 S, R, SNRH, SNRM7 ﬁ’b\, Nmax
» Approximate U using Yy and Yu /* Rough estimation of U%/

v

D « ODL(0Q) /* Online dictionary learning */

» A« OMP(D, U, n...) /* Sparse coding */

» Q2 + A +# 0 /* Computing support */

» H« PCA(Yu, my) /* Computing subspace transform matrix */

/* Start alternate optimization */

fort=1,2,... to stopping rule do
Ut € {U L(U A< L(U, 1, A1)} /* solved with ADMM */
A e {A: L(0;,A) < L(0,A;_1)} /*solved with LS */

end

X =H0

Output: X (high resolution HS image)

4Q. Wei et al,, “Hyperspectral and multispectral image fusion based on a sparse
representation”, IEEE Trans. Geosci. and Remote Sens., vol. 53, no. 7, pp. 3658-3668, July 2015.
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Qualitative results (Pavia dataset)

(d) MAP ) Wavelet ) CNMF ) Gaussian (h) Sparse
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Quantitative results (Pavia dataset)

Table: Performance of different MS + HS fusion methods (Pavia dataset):
RMSE (in 102), UIQI, SAM (in degree), ERGAS, DD (in 10~®) and Time (in
second).

Methods RMSE | ulQl SAM | ERGAS | DD | Time

MAP 1.148 | 0.9875 | 1.962 | 1.029 | 8.666 3
Wavelet MAP | 1.099 | 0.9885 | 1.849 | 0.994 | 8.349 | 75
CNMF 1.119 | 0.9857 | 2.039 | 1.089 | 9.007 | 14

Gaussian 1.011 | 0.9903 | 1.653 | 0.911 7.598 | 6003
Sparse 0.947 | 0.9913 | 1.492 | 0.850 | 7.010 | 282

The proposed method provides promising results for the considered
quality measures.
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Outline

Fast fUsion based on solving a Sylvester Equation (FUSE)
From maximum likelihood estimator...
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Transforming optimization to solving a Sylvester Equation

Forward model
Yy =XBS + Ny, Yy =RX+ Ny
s.t. X =HU

Negative log-likelihood (in subspace)

—logp(Y|U) = —~logp (Yu|U) —log p(Ym|U) + C
= 3lA5* (Yu — HUBS) ||? + 7[|Ay? (Ym — RHU) [P + C

Minimizing the likelihood w.r.t. U < solve a generalized Sylvester
matrix equation

[HHA; H} u [Bs (BS)”} + [(RH)H Ay (RH)] U = term ind. on U

» BS(BS)" is not diagonalizable!
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JYT

Assumption 1
The blurring matrix B is a block circulant matrix with circulant blocks (BCCB).

Assumption 2
The decimation matrix S corresponds to downsampling the original signal and
its conjugate transpose S" interpolates the decimated signal with zeros, e.g.,

1 00010O0OO0O1TO0O0OO0OT1TUO0TQO0ODO

S— 01 00O0O1TO0O0OOT1TO0O0OO0OT1TO0D O
1001 00O0OT1TO0O0OOT1TOOOT11TO
00O01O0OO0OO0OT1TO0OOOT11TOOQODG O1

These two assumptions are used to compute an explicit solution of the

Sylvester equation.
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[H”A; H] U [Bs (BS)H} + [(RH)H Ay (RH)] U = term ind. on U
3 Main Steps
> Left multiply by (H¥A;"H)~': UC, + C;U = Cs, where C, = BS (BS)".

Lemma 1
The equality F"SF = 1Jy @ I, holds, where S = SS", J, is the d x d
matrix of ones and I, is the m x m identity matrix.

» Diagonalize Cy and use Lemma 1 to simplify C,:

um + AcU = (_:3
d
>.D, D, D,
i=
with a diagonal matrix A¢c and M = 13 0 o --- 0
0 O --- 0

D;: m x m diagonal matrix, d: downsampling ratio, m: number of image pixels
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JYT

-

|

Theorem 2 _
2Let(Cs), denotes the jth block of the Ith band of C forany | = 1,--- ,mj.
Then, the solution U of the SE can be decomposed as

ﬁ1,1 ﬁ1,2 U1,d

_ uz 4 Uz » . Uz g

U =
Uny i Um0 Upg

with
— d —1
) i=1
L’c [(CS)I,] U/,1Qj] s Jj= 2,--- 7d.

2Q. Wei et al., “Fast multi-band image fusion based on solving a Sylvester equation”, IEEE
Trans. Image Process., vol. 24, no. 11, pp. 4109-4121, Nov. 2015.
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Fast fUsion based on a Sylvester Equation (FUSE)

Input: YM, YH, Awm, Ag, R, B, S, H
» D + Dec(B) and D = D*D /*Circulant matrix: B = FDF"*/
-1
> Ci « (HHA§1H) ((RH)HA[1RH);
» (Q, A;) + EigDec (C4) /* Eigen-dec of C1: C1 = QAcQ~" ¥/
> 63 —
-1
Q- (HHA§1H) (HYA;; 'Yy (BS)" + (RH)"A; 'Yy)BFP-;

for / =1 to m, do
—1

— d
U1 = (Ca)1 (; > D+ )\’C|n) ;
i=1
forj=2 to ddo
|0 =57 ((Ca)yy — §0D));

end
Output: X = HQUPD~'F"
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Outline

Fast fUsion based on solving a Sylvester Equation (FUSE)

... to maximum a posteriori estimator
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From ML to MAP estimators

Generalized to Bayesian estimators'®
» ¢ (X): Gaussian prior based on interpolation®
» ¢ (X): Sparse representation based on dictionary learning'’
» ¢ (X): Total variation (TV)'®

15Q. Wei et al., “Fast multi-band image fusion based on solving a Sylvester equation”, IEEE
Trans. Image Process., vol. 24, no. 11, pp. 4109-4121, Nov. 2015.

16Q. Wei et al., “Bayesian fusion of multi-band images,” IEEE J. Sel. Topics Signal Process., vol.
9, no. 6, pp. 1117-1127, Sept. 2015.

7Q. Wei et al., “Hyperspectral and multispectral image fusion based on a sparse
representation”, IEEE Trans. Geosci. and Remote Sens., vol. 53, no. 7, pp. 3658-3668, July 2015.

8M. SimGes et al., “A convex formulation for hyperspectral image superresolution via
subspace-based regularization”, IEEE Trans. Geosci. and Remote Sens., vol. 53, no. 6, pp.
3373-3388, June 2015.
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Gaussian prior

Gaussian prior: Sylvester equation embedded in BCD (FUSE-BCD)

Input: Yy, Yu, My, B, S, R, 82,
» H« PCA(Yu,my); /* Subspace transform matrix =/

for t=1,2,... to stopping rule do

U;:argmljn L(U,St271,§)t,1); /* Sylvester equation x/
s?:argmian(Ut,sz,Et_1); /+ Optimize w.r.t. &% x/
S
E,:argmzi:nL(Ut,s?,E); /* Optimize w.r.t. X %/
end

Output: X = HU (High resolution HS image)
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Sparse representation

Sparse prior: Sylvester equation embedded in BCD (FUSE-BCD)

Input: Yy, Yy, B, S, R, SNRy, SNRyi, My, Muax
Output: X (high resolution HS image)
» Approximate U using Yy and Yy /* Rough estimation of U/
» D « ODL(0) /* Online dictionary learning */
» A« OMP(D, U, n,.,) /* Sparse coding */
» O« A £ 0 /* Computing support */
» H <« PCA(Yy, my) /* Computing subspace transform matrix */

/* Start alternate optimization */
fort=1,2,... to stopping rule do
U;e{U: L(UA_y) < L(0;_1,A,_1)} /* solved with SE*/
A c{A: L(0;,A) <L(0;,A,_1)} /*solved with LS */
end

A

X = A0
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Non-Gaussian prior
Non-Gaussian prior, such as (TV)'®

A 1
argmin = A% (Y — HUBS) 2 + = | Ay (Yn — RHU) |2 + ATV (U).
u 2 2 ——

regularizer

HS data term MS data term
can be equivalently solved as:
1

o1 1, _1
argmin 2| Ay * (Y — HUBS) |2 + 5[ Ay* (Ya — RHU) 2+ 0TV (V)

st.U=V
» ADMM algorithm: Sylvester equation + proximity operator
» Sylvester equation embedded in ADMM (FUSE-ADMM)

19M. Simes et al., “A convex formulation for hyperspectral image superresolution via
subspace-based regularization”, IEEE Trans. Geosci. and Remote Sens., vol. 53, no. 6, pp.
3373-3388, June 2015.
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Performance and Computational Times

Table: Performance of HS+MS fusion methods: RSNR (in dB), UIQI, SAM (in
degree), ERGAS, DD (in 10~3) and time (in second).

[ Regularization| Methods [RSNR UIQI SAM ERGAS DD Time |

supervised ADMM  |29.321 0.9906 1.555 0.888 7.115 126.83
naive Gaussian FUSE 29.372 0.9908 1.551 0.879 7.092 0.38
unsupervised | ADMM-BCD |29.084 0.9902 1.615 0.913 7.341 99.55
naive Gaussian| FUSE-BCD |29.077 0.9902 1.623 0.913 7.368 1.09

sparse ADMM-BCD [29.582 0.9911 1.423 0.872 6.678 162.88
representation | FUSE-BCD |29.688 0.9913 1.431 0.856 6.672 73.66
TV ADMM 29.473 0.9912 1.503 0.861 6.922 134.21
FUSE-ADMM|29.631 0.9915 1.477 0.845 6.788 90.99

» The computational time is decreased significantly!
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Table: Characteristics of the three datasets®

dataset dimensions spatialres | N | instrument
PAN 1 2

Moffett 85395 om 224 | AVIRIS
HS 37 x 79 100m
PAN 500 x 500 4

Camargue % m 125 HyMap

HS 100 x 100 20m
PAN 4 4 4

Garons 00 > 400 m 125 HyMap
HS 80 x 80 20m

201 Loncan, L. B. Aimeida, J. M. Bioucas-Dias, X. Briottet, J. Chanussot, N. Dobigeon, S. Fabre,
W. Liao, G. Licciardi, M. Simoes, J-Y. Tourneret, M. Veganzones, G. Vivone, Q. Wei and N. Yokoya,
“Hyperspectral pansharpening: a review”, IEEE Geosci. and Remote Sens. Mag., vol. 3, no. 3, pp.
27-46, Sept. 2015.
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Figure: Camargue. (a) Ref, (b) interpolation, (c) SFIM, (d) MTF GLP HPM,
(e) GSA, (f) PCA, (g) GFPCA, (h) CNMF, (i) Bayesian Sparse, (j) HySure.
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Table: Quality measures for the Moffett field datase

t21

method CcC SAM RMSE ERGAS | Time(sec)
SFIM 0.92955 | 9.5271 | 365.2577 | 6.5429 1.26
MTF-GLP 0.93919 | 9.4599 | 352.1290 | 6.0491 1.86
MTF-GLP-HPM 0.93817 | 9.3567 | 354.8167 | 6.1992 1.71
GS 0.90521 | 14.1636 | 443.4351 | 7.5952 4.77
GSA 0.93857 | 11.2758 | 363.7090 | 6.2359 5.52
PCA 0.89580 | 14.6132 | 463.2204 | 7.9283 3.46
GFPCA 0.91614 | 11.3363 | 404.2979 | 7.0619 2.58
CNMF 0.95496 | 9.4177 | 314.4632 | 5.4200 10.98
Supervised Gaussian
Sparse represent. 0.98168 | 6.6392 | 200.3365 | 3.4281 133.61
HySure 0.97059 | 7.6351 | 254.2005 | 4.3582 140.05

21red: best

: second best
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blue: third best
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Table: Quality measures for the Camargue datase

t22

method CcC SAM RMSE ERGAS | Time(sec)
SFIM 0.91886 | 4.2895 | 637.1451 3.4159 3.47
MTF-GLP 0.92397 | 4.3378 | 622.4711 3.2666 4.26
MTF-GLP-HPM 0.92599 | 4.2821 | 611.9161 3.2497
GS 0.91262 | 4.4982 | 665.0173 | 3.5490 8.29
GSA 0.92826 | 4.1950 | 587.1322 | 3.1940 8.73
PCA 0.90350 | 5.1637 | 710.3275 | 3.8680 8.92
GFPCA 0.89042 | 4.8472 | 745.6006 | 4.0001 8.51
CNMF 0.93000 | 4.4187 | 591.3190 | 3.1762 47.54
Supervised Gaussian 7.35
Sparse represent. 0.95882 | 3.3345 | 448.1721 | 2.4712 485.13
HySure 0.94650 | 3.8767 | 511.8525 | 2.8181 296.27

22red: best

: second best

JYT Bayesian Fusion of Multi-band Images

blue: third best
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Table: Quality measures for the Garons datase

t23

method cC SAM RMSE ERGAS | Time(sec)
SFIM 0.77052 | 6.7356 | 1036.4695 | 5.1702 2.74
MTF-GLP 0.80124 | 6.6155 | 956.3047 | 4.8245 4.00
MTF-GLP-HPM 0.79989 | 6.6905 | 962.1076 | 4.8280
GS 0.80347 | 6.6627 | 1037.6446 | 5.1373 5.56
GSA 0.80717 | 6.7719 | 928.6229 4.7076 5.99
PCA 0.81452 | 6.6343 | 1021.8547 | 5.0166 6.09
GFPCA 0.63390 | 7.4415 | 1312.0373 | 6.3416 4.36
CNMF 0.82993 | 6.9522 | 893.9194 4.4927 23.98
Supervised Gaussian 784.1298 3.07
Sparse represent. 0.87834 | 5.6377 | 750.3510 3.7629 259.44
HySure 0.86080 | 6.0224 4.0454 177.60
23red: best : second best  blue: third best
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Conclusions

Fusion of multi band images formulated as a linear inverse
problem, that exploits explicitly the forward model

» Constrain the estimated image in a lower-dimensional space
» Definition of multiple priors within a (hierarchical) Bayesian

JYT

framework

» Gaussian prior
» Sparse prior from dictionary learning

Estimation of noise variances is possible with the proposed
algorithm

The spectral response of the MS image can be included in the
estimation at the price of a higher computational complexity

Toward fast fusion by using a closed-form solution of Sylvester
equation: can be generalized to various priors
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Ongoing work
» Forward model

» joint estimation of the HS and MS degradation operators: B and R
» incorporating other physical models: unmixing, MRF, etc.

> Real data
misregistration: different sensors, platforms
nonlinear degradation: translation, rotation, stretching

HISUI, EnMAP: satellites to be launched
regularization parameters: included within the estimation scheme

Yy VvV VY

» Sequential inference

» 4-D (spatial, spectral, temporal) datacube: compressive sensing
» exploiting 4-D data: super-resolution, change detection, etc.
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Robustness with respect to R

FSNR: defined to adjust the knowledge of R

R 2
a2

60 80 100 120 140 160

I

5 10 15 20 25 30
60 80 100 120 140 160 FSNR(B)

When FSNR is above 8dB, the proposed method outperforms the
MAP and wavelet-based MAP methods.
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Performance versus \
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