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Abstract—This paper addresses the delayed (or anechoic)
source separation problem in the case of parameterized deter-
ministic sources. An alternating least square scheme is proposed
to estimate the source parameters, the mixing coefficients and
the delays. For the challenging delay parameter we adapt
a sparse approximation strategy. A first algorithm considers
discrete delays; then an extension, inspired by the recent sparse
deconvolution literature, allows for continuous delay estimation.
Numerical simulations demonstrate the effectiveness of the pro-
posed algorithms compared to state-of-the-art methods for highly
correlated Gaussian sources.
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squares, continuous delay estimation, decomposition of spectro-
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I. INTRODUCTION

Separation of delayed sources, also known as anechoic source
separation, is a special case of convolutive source separation [1]
where each delayed source occurs at most once in each mixture
and is invariant to translation. Some applications include, e.g.,
audio signal processing [2], underwater acoustics [3]. This
work is inspired by the study of galaxy kinematics [4] where
data are multispectral images, where each pixel is related to a
spectrum with emission lines. These lines must be estimated
but they undergo different delays in each spectrum due to
the redshift and internal gas motions (Doppler effect). This
justifies the delayed source separation model, where sources
and mixtures are respectively associated to emission lines and
spectra.

Since the delayed source separation problem is ill-posed,
strong assumptions are made to discriminate the sources. Most
of the methods rely on the assumption that the sources are
independent, like in the shifted independent component analysis
method [5]. The source independence can be promoted by
different ways, for instance with second order statistic methods
either in temporal [6], [7] or frequency domains [3], [8].
Another strategy is to analyze the data in a domain where
the sources are disjoint or uncorrelated, usually the time-
frequency domain [2], [9], [10]. However, the independent
and uncorrelated source assumptions do not hold in many real-
world problems [11], so classical approaches cannot be applied.
An early attempt to separate correlated sources was proposed
in [12] using sparsity constraints on the sources: each mixture is
sparsified, then the sparse representations are matched together
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to retrieve the sources and the related delays. However, this
two-step method may suffer from error propagations. In [13],
[14], the uncorrelated source assumption has been relaxed, by
introducing the concept of partially correlated sources. This
technique, however, is limited to the instantaneous source
separation problem.

In the literature, the difficult situation where sources are
highly correlated and delayed is not covered, thus new algo-
rithms have to be proposed. In this work, we propose an original
method that takes advantage of prior knowledge on the shape of
the source signals. We assume that the sources can be modeled
by parameterized functions, whose parameters correspond to
shape information such as the width of an emission line.
The separation of parameterized sources might appear to be
simpler than blind source separation since the shape of the
sources is known beforehand up to a few parameters. However,
parameterized sources are often correlated especially if the
sources are modeled with the same function. For instance,
emission lines in the galaxy kinematic problem are modeled
by Gaussian functions [4], yielding highly correlated sources.

Estimating the source parameters in a unique mixture shares
similarities with sparse deconvolution, where time-shifted
copies of a perfectly known waveform are gathered into a
dictionary [15], [16]. We extend this framework to the case
of numerous sources and mixtures, by considering different
waveforms (i.e. sources) whose shape parameters are unknown
and have to be estimated. Furthermore, the sparse solution
is designed to comply with the delayed source separation
model, in particular the fact that sources occur at most
once in a mixture. In addition, our approach exploits recent
results on sparse deconvolution that allow for continuous delay
estimation [15], [16]. Finally, the dictionary does not need to
be stored.

This paper is organized as follows. The delayed and
parameterized source separation problem and the optimization
problem are formulated in section II. Section III presents the
Alternative Least Squares (ALS) framework, then two ALS
algorithms are proposed for discrete and continuous delay
estimation in section IV. In section V, numerical simulations
illustrate the performance of the proposed algorithms.



II. PROBLEM STATEMENT

In delayed source separation, each mixture xi(t) is modeled
as a linear combination of J sources sj(t):

xi(t) =

J∑
j=1

aijsj(t− cij) i = 1, . . . , I (1)

where aij and cij are respectively the amplitude and the
delay from source j to mixture i. Hereafter, we consider
the over-determined case where I > J (this is a typical
setting in multispectral imaging). Recall that the sources we
are considering are assumed to follow a known parameterized
model sj(t;wj) where wj represents the shape parameters of
source j. The noisy observations xi(t) are thus modeled by:

xi(t) =

J∑
j=1

aijsj(t− cij ;wj) + ni(t) i = 1, . . . , I (2)

where the noise ni(t) gathers both the observation noise and
the modeling errors.

Source separation is recast as a parameter estimation problem,
where the parameters to estimate are the amplitudes aij , the
delays cij and the shape parameters wj . Assuming that the
noise is i.i.d. Gaussian, source separation can be formulated
as the least squares optimization problem:

min
A,C,w

{
E(A,C,w) =

I∑
i=1

ε(ai, ci,w)
}

(3)

where the error related to mixture i is given by:

ε(ai, ci,w) =

∥∥∥∥xi(t)−
J∑

j=1

aijsj(t− cij ;wj)

∥∥∥∥2

2

. (4)

In (3)-(4), t is sampled over a discrete grid of length N . Without
loss of generality, we assume that the sampling step is equal
to 1. Matrices A and C and vector w are given by:
• A = [a1, . . . ,aI ] ∈ RJ×I with ai = [ai1, . . . , aiJ ]T ;
• C = [c1, . . . , cI ] ∈ RJ×I with ci = [ci1, . . . , ciJ ]T ;
• w = [w1, . . . , wJ ]T ∈ RJ×1.

Minimization of criterion (3) is discussed in the next section.

III. ALTERNATING LEAST SQUARES

ALS is a classical descent strategy [17], consisting of
minimizing criterion E with respect to groups of variables alter-
natively. In delayed source separation, several approaches [2],
[5], [8] make use of an ALS strategy, where the sources are
updated while fixing the delays and amplitudes to the values
found in the previous iteration and vice versa. However, the
update stages significantly differ in the proposed algorithm
from these works. Specifically, the source estimation stage
is replaced by their shape estimation, whereas the delays are
estimated using an effective sparse deconvolution solver. It
should be noticed that the ALS scheme does not guarantee
to converge towards the global minimizer of (3), since each
step of the scheme is a local minimization with respect to a
group of the parameters and E is non-convex. However, all

Algorithm 1: Alternative Least Squares.
Inputs: mixtures xi, stopping parameter ρ
Outputs: Ĉ, Â, ŵ
Initialization: Â, Ĉ, ŵ

1 Ê ← E(Â, Ĉ, ŵ)
2 do
3 Eold ← Ê

4 ŵ ← argmin
w

E
(
Â, Ĉ,w

)
5 for i=1:I do
6 (âi, ĉi)← argmin

ai,ci

ε(ai, ci, ŵ)

7 end
8 Ê ← E

(
Â, Ĉ, ŵ

)
9 while

∣∣Eold − Ê
∣∣/Eold ≥ ρ

the simulations we have performed led to estimations close to
the ground-truth parameters.

The ALS framework is presented in Algorithm 1, where
the stopping criterion is related to the relative decrease of the
approximation error. In the first stage, E is minimized with
respect to w (line 4 of Algorithm 1) using a non-linear least-
squares solver, namely the Levenberg-Marquardt algorithm.
In the second stage, E is minimized with respect to A and
C jointly. From (3), this is a separable problem leading to I
independent sub-problems (lines 5-7 of Algorithm 1):

min
A,C

E
(
A,C,w

)
⇔ ∀i, min

ai,ci

ε(ai, ci,w) (5)

The implementation of each sub-problem is detailed next.

IV. SPARSE APPROACH FOR AMPLITUDE AND DELAY
ESTIMATION

Hereafter, index i is dropped for brevity. The i-th sub-
problem in the right-hand side of (5) can be rewritten as:

min
a,c

∥∥∥∥x(t)−
J∑

j=1

ajsj(t− cj ;wj)

∥∥∥∥2

2

= min
a,c

∥∥∥∥x(t)−
J∑

j=1

sj(t;wj) ∗ (ajδcj (t))

∥∥∥∥2

2

(6)

where ∗ is the convolution operator and δcj (t) = δ(t − cj)
refers to the Kronecker function. Eq. (6) involves only one
mixture x(t) = xi(t). In addition, the reader should keep
in mind that cj (resp., aj) is the delay of the j-th source in
mixture i, and has to be understood as cij (resp., aij) in (4).

Eq. (6) reads as a sparse approximation problem since
ajδcj (t) are 1-sparse vectors. Therefore, our strategy to
estimate the delays cj and amplitudes aj is inspired by sparse
approximation algorithms.

A. Discrete Delay Estimation

To address each sparse approximation problem (6), we
impose the delays cj to be located on a discrete grid of sampling
step ∆. In other words, the delays take the form cj = `∆ with



Algorithm 2: OMP-like implementation for minimization
of ε(a, c,w) w.r.t. (a, c): case of discrete delays

Inputs: mixture x, sources sj(t;wj), sampling step ∆
Outputs: a and c
Initialization: S = ∅, J = ∅, c = 0

1 for k = 1 : J do

2 (ˆ̀, ĵ)← argmax
`∈N
j /∈J

〈sj ∗ δ`∆,x− Sa〉
‖sj‖2

3 J (k)← ĵ

4 cĵ ← ˆ̀∆

5 Include sĵ(t− cĵ ;wĵ) as new column in S

6 a← S†x
7 end
8 Permute a with respect to J

` ∈ N. The sparsity level J being small, we resort to greedy
algorithms because of their simplicity. Specifically, we propose
to adapt the classical Orthogonal Matching Pursuit (OMP)
algorithm [18] (Algorithm 2), which is an iterative forward
selection algorithm. In the proposed adaptation, one source
(indexed by ĵ) is selected per iteration, and the related delay
cĵ is computed using the OMP selection rule, i.e., selecting the
most correlated delayed source version to the current residual.
J gathers the indices of the selected sources, and † denotes the
pseudo-inverse operator, S† = (STS)−1ST . The amplitudes
aĵ are updated by solving a linear least squares problem, and
an index permutation (with respect to J ) is applied in step
8. This permutation is required since the order in which the
delayed version are arranged in S does not match the predefined
ordering of sources.

B. Continuous Delay Estimation

The delays can be estimated more accurately by increasing
the grid resolution, i.e., decreasing the value of ∆. However,
this increases the computational burden and might affect
negatively the performance of the OMP algorithm for correlated
sources. We choose an alternating strategy, in which the OMP-
like implementation of Subsection IV-A is adapted to deal
with continuous delays (off-the-grid delays). Recently, Fyhn
et al. [16, Section IV] proposed a continuous extension of
OMP, named IBOMP, for sparse deconvolution. Their approach
makes use of an interpolation scheme first introduced in [15].
Specifically, this approach requires to preset a grid of step ∆,
and then to interpolate the delayed versions of the waveform
for consecutive delays that lay on the grid.

IBOMP can be straightforwardly adapted to our context
because the structure of the delayed unmixing problem is very
close to that of sparse deconvolution problems. Specifically,
each iteration of Algorithm 2 almost identifies to an iteration
of OMP for sparse deconvolution (with waveform sĵ), yielding
the selection of source ĵ and related discrete (coarse) estimation
delay ˆ̀∆. Then, the refined estimation of cĵ becomes cĵ + η

where η ∈ [−∆/2,∆/2] is a real value. The proposed strategy
consists in replacing step 5 of Algorithm 2 by:

Include sĵ(t− cĵ − η;wĵ) as new column in S

The authors in [15], [16] advocate the use of polar interpolation
which empirically outperforms other interpolation techniques
in terms of delay estimation. This strategy exploits the fact
that delayed versions of a source sĵ(t) form a manifold which
lies on the surface of a hypersphere (because the `2-norm of
the sources is preserved under delay variations). Therefore,
a segment on this manifold can be approximated by an arc,
which leads to polar interpolation. The resulting equation has
the following closed-form [15, Eq. (16)]:

sĵ(t− cĵ − η;wĵ) =
(
α β γ

)sĵ(t− cĵ −
∆
2 ;wĵ)

sĵ(t− cĵ ;wĵ)

sĵ(t− cĵ + ∆
2 ;wĵ)

 (7)

where α, β and γ are scalar values calculated as in [16].

V. RESULTS

The performance of the proposed algorithm is evaluated
on synthetic data. We are inspired by the galaxy kinematic
problem [4] implying that: (i) all the sources are modeled by
a Gaussian peak: sj(t;wj) = exp(−t2/2w2

j ); (ii) the shape
parameters and amplitudes take positive values, while the delays
slowly evolve from one mixture to another; (iii) the sources
do not necessarily appear in each mixture. To consider the last
point, a stopping criterion is added in Algorithm 2 (line 1):
the loop can break in less than J iterations when the residual
ε(a, c,w) becomes lower than a threshold (set to the noise
variance in our experiments).

In the first experiment, I = 30 mixtures are generated
with N = 200 samples, J = 3 sources, widths w∗ =
[1.99 3.78 8.95] and a Signal to Noise Ratio (SNR)1 equal
to 10 dB. Fig. 1 (a),(e) show that the proposed algorithm
(with continuous delay estimation and step ∆ = 2) is able to
separate properly the sources and their parameters (in particular,
ŵ = [1.89 3.81 9.05]). We also compare with [19], which
specifically decomposes a sequence of spectroscopic signals
into a sum of Gaussians, using an MCMC (Monte Carlo
Markov Chain) algorithm stated in a Bayesian framework.
The estimation is also satisfactory [Fig. 1 (b),(f)], with
ŵMCMC = [2.05 3.97 8.99] and the reconstruction of the
mixtures is clearly correct. On the contrary, classical delayed
source separation methods [2], [5] fail to retrieve the sources
since they do not match the Gaussian shape [Fig. 1 (g)-
(h)]. Furthermore, the reconstruction of the mixtures fails as
well [Fig. 1 (c)-(d)]. This can be explained by the fact that
independent and uncorrelated source assumptions are not valid
in our application.

Next, we present a comparison between both versions
of the proposed algorithm (discrete and continuous delay
estimation) and the method of [19] that gave comparable results,

1Defined as 10 times the log-ratio of the mean energy of the noiseless
spectra and the noise variance.
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Fig. 1. Example of delayed source separation. Fig.(a)-(b) show the synthetic data (gray) and the sources with estimated parameters (colored) by the proposed
approach (continuous delay estimation) and Mazet et. al [19] method. (c)(d): mixture reconstruction by the methods of Nion et. al [2] and Mørup et. al [5].
The bottom sub-figures display the estimated sources for each of these methods.
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Fig. 2. Comparison of both ALS versions with the algorithm of [19]. Scores are averaged over 50 trials. Red line (- -): discrete version; black line (×):
continuous version; green line (solid line): algorithm of [19].

contrary to [2], [5]. 50 datasets with random parameters were
generated, each with I = 40 mixtures, an average SNR equal
to 15 dB, J = 3 sources. The stopping criterion threshold
is set to ρ = 10−6. The data were processed for different
grid steps ∆, except for the algorithm of [19] which does not
require to set ∆. Fig. 2 shows averaged results over 50 trials.
Similar comparison results were found for different noise levels
(SNR ∈ [0, 30] dB). The algorithms are compared in terms of
the value of criterion E, that is, the quality of approximation
of the mixture signals [Fig. 2 (a)]. Results show that the
continuous version improves the estimation quality compared
to the discrete version especially, for the largest ∆’s and gives
very close results to [19]. For instance, good performance
of the continuous version can be obtained even for a coarse
∆ = 2.9. However, the residual norm depends on the number of

estimated peaks (a high number of peaks decreases the residual
at the price of an overestimation). The proposed algorithm
tends to slightly use more than the actual number of peaks
needed whereas the algorithm of [19] tends to underestimate
this number, as shown in Fig. 2 (b). The continuous version is
more expensive in time than the discrete one [Fig. 2 (c)] because
of the extra interpolation step. Obviously, the computation time
increases with 1

∆ . Nevertheless, both proposed algorithms are
much faster than the algorithm of [19] (≈ 2.5 times faster for
all the values of ∆).

VI. CONCLUSION

This paper presents an ALS strategy to deal with the
delayed source separation of parameterized sources. The source
estimation step is recast to their shape parameter estimation.



For the challenging delay estimation, we extend the sparse
approximation algorithm to the case of numerous mixtures
and multiple sources. This algorithm allows continuous delay
estimation, giving more accurate estimates than dictionary
based approaches (discrete estimation). The proposed ALS
method with continuous delay estimation outperforms state-of-
the art delayed source separation methods when sources are
highly correlated. Furthermore, it is as effective as the best
competitors with much better computation time. In practice,
it seems that setting only one sub-iteration of the Levenberg-
Marquardt algorithm (line 4 in Algorithm 1) is sufficient to
provide accurate outputs; The rationale behind this choice is that
in the first iterations, the estimates Â and Ĉ are not accurate,
therefore there is no need to compute a precise solution of step
4 of Algorithm 1. As a perspective, we would like to include
a smooth regularization on the delays to model their slow
evolution throughout the mixtures. Another perspective is to
extend the proposed algorithm to deal with sources whose shape
parameters evolve through the mixtures. These two situations
arise in multispectral images of galaxies.
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[10] Ö. Yilmaz and S. Rickard, “Blind separation of speech mixtures via time-
frequency masking,” IEEE Trans. Signal Process., vol. 52, pp. 1830–1847,
2004.

[11] S. Moussaoui, D. Brie, A. Mohammad-Djafari, and C. Carteret, “Separa-
tion of non-negative mixture of non-negative sources using a Bayesian
approach and MCMC sampling,” IEEE Trans. Signal Process., vol. 54,
pp. 4133–4145, 2006.

[12] J. Duan, “Restoration and separation of piecewise polynomial signals.
Application to Atomic Force Microscopy,” PhD thesis, Université Henri
Poincaré, Nancy, 2010.

[13] W. Naanaa and J. M. Nuzillard, “Blind source separation of positive and
partially correlated data,” Signal Process., vol. 85, pp. 1711–1722, 2005.

[14] J. Bobin, J. Rapin, A. Larue, and J.-L. Starck, “Sparsity and adaptivity
for the blind separation of partially correlated sources,” IEEE Trans.
Signal Process., vol. 63, pp. 1199–1213, 2015.

[15] C. Ekanadham, D. Tranchina, and E. P. Simoncelli, “Recovery of sparse
translation-invariant signals with continuous basis pursuit,” IEEE Trans.
Signal Process., vol. 59, pp. 4735–4744, 2011.

[16] K. Fyhn, M. F. Duarte, and S. H. Jensen, “Compressive parameter esti-
mation for sparse translation-invariant signals using polar interpolation,”
IEEE Trans. Signal Process., vol. 63, pp. 870–881, 2015.

[17] J. De Leeuw, “Convergence of the majorization method for multidimen-
sional scaling,” J. Classification, vol. 5, 1988.

[18] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, “Orthogonal matching
pursuit: Recursive function approximation with applications to wavelet
decomposition,” in Proc. 27th Asilomar Conf. on Signals, Systems and
Computers, vol. 1, 1993, pp. 40–44.

[19] V. Mazet, S. Faisan, S. Awali, M. Gaveau, and L. Poisson, “Unsupervised
joint decomposition of a spectroscopic signal sequence,” Signal Process.,
vol. 109, pp. 193–205, 2015.


