

FORMULAIRE

Propriétés des transformées de Laplace et de Fourier

Transformées usuelles

Fabrice Heitz

Sources complémentaires :

- Y. THOMAS, Signaux et systèmes linéaires, Masson, Paris, 1992.
- A.V. OPPENHEIM and A.S. WILLSKY with I.T. YOUNG, Signals and Systems, Prentice Hall, Signal Processing Series, Englewood Cliffs, 1983.
- J.P. DELMAS, Éléments de théorie du signal : les signaux déterministes, Ellipses, Paris, 1991.

Définitions et notations

• Décomposition en série de Fourier (x(t)) périodique) :

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{j2\pi k f_0 t}$$
 avec : $a_k = \frac{1}{T_0} \int_{T_0} x(t) e^{-j2\pi k f_0 t} dt$

- Transformée de Fourier :
 - \triangleright Variable f:

$$X(f) = \int_{-\infty}^{+\infty} x(t)e^{-j2\pi ft}dt$$
$$x(t) = \int_{-\infty}^{+\infty} X(f)e^{j2\pi ft}df$$

 \triangleright Variable $\omega = 2\pi f$:

$$X(\omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\omega t}dt$$
$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(\omega)e^{j\omega t}d\omega$$

• Transformée de Laplace bilatérale :

$$X(s) = \int_{-\infty}^{+\infty} x(t)e^{-st}dt$$

avec: $s = \sigma + j\omega \in C$.

$$x(t) = \frac{1}{2\pi j} \int_{\Delta} X(s)e^{st} ds$$

où Δ est une droite parallèle à $s=j\omega$ et située dans la région de convergence de X(s).

Définitions et notations (suite)

- Fonctions usuelles :
 - ▷ Fonction porte (créneau)

$$rect_T(t) = \begin{cases} 0 & |t| > \frac{T}{2} \\ 1 & |t| < \frac{T}{2} \end{cases}$$

▶ Fonction d'Heaviside (échelon unité)

$$\mathbf{u}(t) \ = \ \left\{ \begin{array}{ll} 0 & t & < & 0 \\ 1 & t & > & 0 \end{array} \right.$$

▶ Fonction signe :

$$\operatorname{sign}(t) = \begin{cases} -1 & t < 0 \\ 1 & t > 0 \end{cases}$$

▶ Fonction sinus cardinal :

$$\operatorname{sinc}(t) = \frac{\sin \pi t}{\pi t}$$

Série de Fourier : propriétés

Signal périodique	Coefficients de la série
$x(t)$ (période T_0)	a_k
$y(t)$ (période T_0)	b_k
Ax(t) + By(t)	$Aa_k + Bb_k$
$x(t-t_0)$	$a_k e^{-jk(\frac{2\pi}{T_0})t_0}$
$e^{jM(\frac{2\pi}{T_0})t}x(t)$	a_{k-M}
$x^*(t)$	a_{-k}^*
x(-t)	a_{-k}
$x(\alpha t), \ \alpha > 0 \ (extbf{p\'eriode} \ rac{T_0}{lpha})$	a_k
$\frac{1}{T_0} \int_{T_0} x(\tau) y(t-\tau) d\tau$	$a_k b_k$
x(t)y(t)	$\sum_{l=-\infty}^{+\infty} a_l b_{k-l}$
$\frac{dx(t)}{dt}$	$jkrac{2\pi}{T_0}a_k$
$\int_{-\infty}^{t} x(\tau)d\tau \text{ (avec } a_0 = 0\text{)}$	$\left(rac{1}{jk(rac{2\pi}{T_0})} ight)a_k$
x(t) réel	$a_k = a_{-k}^*$
x(t) réel et pair	a_k réel et $a_k = a_{-k}$
Relation de Parseval : (signaux périodiques)	$\frac{1}{T_0} \int_{T_0} x(t) ^2 dt = \sum_{k=-\infty}^{+\infty} a_k ^2$

Transformée de Fourier : propriétés

Signal	Transformée (en f)	Transformée (en ω)	
x(t)	$X(f)$ $X(\omega)$		
$x_1(t)$	$X_1(f)$	$X_1(\omega)$	
$x_2(t)$	$X_2(f)$	$X_2(\omega)$	
$a x_1(t) + b x_2(t)$	$aX_1(f) + bX_2(f)$	$a X_1(\omega) + b X_2(\omega)$	
$x(t-t_0)$	$e^{-j2\pi f t_0} X(f)$	$e^{-j\omega t_0}X(\omega)$	
$e^{j2\pi f_0 t}x(t)$	$X(f-f_0)$	$X(\omega - \omega_0) (\omega_0 = 2\pi f_0)$	
x(at)	$\frac{1}{ a }X\left(\frac{f}{a}\right)$	$rac{1}{ a }X\left(rac{\omega}{a} ight)$	
$x^*(t)$	$X^*(-f)$	$X^*(-\omega)$	
x(-t)	X(-f)	$X(-\omega)$	
$x_1(t) * x_2(t)$	$X_1(f) X_2(f)$	$X_1(\omega) X_2(\omega)$	
$x_1(t)$. $x_2(t)$	$X_1(f) * X_2(f)$	$\frac{1}{2\pi} X_1(\omega) * X_2(\omega)$	
$\frac{d}{dt}x(t)$	$j2\pi f X(f)$	$j\omegaX(\omega)$	
tx(t)	$rac{j}{2\pi} rac{d}{df} X(f)$	$jrac{d}{d\omega}X(\omega)$	
$\int_{-\infty}^{t} x(\tau) d\tau$	$\frac{1}{j2\pi f}X(f) + \frac{1}{2}X(0)\delta(f)$	$\frac{1}{j\omega}X(\omega) + \pi X(0)\delta(\omega)$	
x(t) réel	$ \begin{cases} X(-f) &=& X^*(f) \\ X(-f) &=& X(f) \\ Arg X(-f) &=& -Arg X(f) \end{cases} $	$\begin{cases} X(-\omega) &= X^*(\omega) \\ X(-\omega) &= X(\omega) \\ Arg X(-\omega) &= -Arg X(\omega) \end{cases}$	
Dualité	$ \begin{cases} g(t) & \stackrel{\mathcal{F}}{\longleftrightarrow} & h(f) \\ h(t) & \stackrel{\mathcal{F}}{\longleftrightarrow} & g(-f) \end{cases} $	$\begin{cases} g(t) & \stackrel{\mathcal{F}}{\longleftrightarrow} & h(\omega) \\ h(t) & \stackrel{\mathcal{F}}{\longleftrightarrow} & 2\pi g(-\omega) \end{cases}$	
Relation de Parseval (signaux d'énergie finie)	$\int_{-\infty}^{+\infty} x(t) ^2 dt$ $= \int_{-\infty}^{+\infty} X(f) ^2 df$	$\int_{-\infty}^{+\infty} x(t) ^2 dt$ $= \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(\omega) ^2 d\omega$	

Transformée de Laplace bilatérale : propriétés

Signal	Transformée	RDC	
x(t)	X(s)	R	
$x_1(t)$	$X_1(s)$	R_1	
$x_2(t)$	$X_2(s)$	R_2	
$ax_1(t) + bx_2(t)$	$aX_1(s) + bX_2(s)$	au moins $R_1 \cap R_2$	
$x(t-t_0)$	$e^{-st_0}X(s)$	R	
$e^{s_0t}x(t)$	$X(s-s_0)$	R translaté de s_0	
x(at)	$\frac{1}{ a }X\left(\frac{s}{a}\right)$	$s \in \mathbf{RDC}$ $\mathbf{si} \frac{s}{a} \in R$	
$x_1(t) * x_2(t)$	$X_1(s)X_2(s)$	au moins $R_1 \cap R_2$	
$\frac{d}{dt}x(t)$	sX(s)	au moins R	
-tx(t)	$\frac{d}{ds}X(s)$	R	
$\int_{-\infty}^{t} x(\tau) d\tau$	$\frac{1}{s}X(s)$	au moins $R \cap \{ \mathbf{Re}(s) > 0 \}$	
Th. valeur finale		$\lim_{s \to 0} sX(s) = x(+\infty)$	
Th. valeur initiale $x(t) = 0, \ t < 0$		$\lim_{s \to +\infty} sX(s) = x(0^+)$	

riangle différence avec la transformée de Laplace monolatérale définie par :

$$\mathcal{L}^{+}[x(t)] = X^{+}(s) = \int_{0}^{+\infty} x(t)e^{-st}dt$$

on a la relation:

$$\mathcal{L}^{+}\left[\frac{d}{dt}x(t)\right] = sX^{+}(s) - x(0^{-})$$

si x(t) ne présente pas d'impulsions à l'origine.

Transformées de Fourier usuelles

$\mathbf{x}(\mathbf{t})$	$\mathbf{X}(\mathbf{f})$	$\mathbf{X}(\omega)$	
$\exp(j2\pi f_0 t)$	$\delta(f-f_0)$	$2\pi\delta(\omega-\omega_0)$	
$\cos(2\pi f_0 t)$	$\frac{1}{2}[\delta(f-f_0)+\delta(f+f_0)]$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$	
$\sin(2\pi f_0 t)$	$\frac{1}{2j}[\delta(f-f_0)-\delta(f+f_0)]$	$f + f_0$ $\frac{\pi}{j} [\delta(\omega - \omega_0) - \delta(\omega + \omega_0)]$	
$\sum_{k=-\infty}^{+\infty} a_k \exp(j2\pi k f_0 t)$	$\sum_{k=-\infty}^{+\infty} a_k \delta(f - kf_0)$	$2\pi \sum_{k=-\infty}^{+\infty} a_k \delta(\omega - k\omega_0)$	
1	$\delta(f)$	$2\pi\delta(\omega)$	
$\exp(-a t) \; ; \; a > 0$	$\frac{2a}{a^2 + (2\pi f)^2}$	$\frac{2a}{a^2 + (\omega)^2}$	
sign(t)	$v.p.\left(\frac{1}{j\pi f}\right)$	$v.p.\left(\frac{2}{j\omega}\right)$	
$\mathbf{u}(t)$	$v.p.\left(\frac{1}{j2\pi f}\right) + \frac{1}{2}\delta(f)$	$v.p.\left(\frac{1}{j\omega}\right) + \pi\delta(\omega)$	
$\mathrm{rect}_{2T}(t)$	$2T\operatorname{sinc}(2fT)) = \frac{\sin(2\pi fT)}{\pi f}$	$2T\operatorname{sinc}\left(\frac{\omega T}{\pi}\right) = \frac{2\sin(\omega T)}{\omega}$	
$2f_0 \operatorname{sinc}(2f_0 t) = \frac{\sin(2\pi f_0 t)}{\pi t}$	$rect_{2f_0}(f)$	$rect_{2\omega_0}(\omega)$	
$\exp\left[-\pi\left(\frac{t^2}{\sigma^2}\right)\right]$	$\sigma \exp[-\pi (\sigma f)^2]$	$\sigma \exp\left[-\frac{(\sigma\omega)^2}{4\pi}\right]$	
$\delta(t)$	1	1	
$\delta^n(t)$ (dérivée $n^{\text{ième}}$)	$(j2\pi f)^n$	$(j\omega)^n$	
$\delta(t-t_0)$	$\exp(-j2\pi f t_0)$	$\exp(-j\omega t_0)$	
$\sum_{k=-\infty}^{+\infty} \delta(t - kT)$	$\frac{1}{T} \sum_{k=-\infty}^{+\infty} \delta(f - \frac{k}{T})$	$\frac{2\pi}{T} \sum_{k=-\infty}^{+\infty} \delta(\omega - \frac{k2\pi}{T})$	

 $\omega_0 = 2\pi f_0$

Transformées de Fourier usuelles

(Fonctions nulles pour t < 0)

$\mathbf{x}(\mathbf{t})$	$\mathbf{X}(\mathbf{f})$	$\mathbf{X}(\omega)$
$\mathrm{u}(t)$	$v.p.\left(\frac{1}{j2\pi f}\right) + \frac{1}{2}\delta(f)$	$v.p.\left(\frac{1}{j\omega}\right) + \pi\delta(\omega)$
$\exp(-at) \mathbf{u}(t) \; ; \; \mathbf{Re}(a) > 0$	$\frac{1}{j2\pi f + a}$	$\frac{1}{j\omega + a}$
$t \exp(-at) \mathbf{u}(t) \; ; \; \mathbf{Re}(a) > 0$	$\frac{1}{(j2\pi f + a)^2}$	$\frac{1}{(j\omega+a)^2}$
$\frac{t^{n-1}}{(n-1)!} \exp(-at) u(t) ; \mathbf{Re}(a) > 0$	$\frac{1}{(j2\pi f + a)^n}$	$\frac{1}{(j\omega+a)^n}$
$\exp(-at)\sin(2\pi f_0 t) u(t) \; ; \; \mathbf{Re}(a) > 0$	$\frac{2\pi f}{(j2\pi f + a)^2 + (2\pi f_0)^2}$	$\frac{\omega}{(j\omega+a)^2+(\omega_0)^2}$
$\exp(-at)\cos(2\pi f_0 t) \mathbf{u}(t) ; \mathbf{Re}(a) > 0$	$\frac{j2\pi f + a}{(j2\pi f + a)^2 + (2\pi f_0)^2}$	$\frac{j\omega + a}{(j\omega + a)^2 + (\omega_0)^2}$

 $\overline{\omega_0} = 2\pi \mathbf{f_0}$

ANNEXE : Compléments sur les distributions

Les distributions S sont définies de façon générale comme des «fonctionnelles» linéaires continues qui associent à une «fonction test» $\phi(t)$ un scalaire.

Les «fonctions tests» $\phi(t)$ doivent être continues, indéfiniment dérivables et de support borné.

Le scalaire associé par la distribution S à la fonction ϕ est noté : $\langle S, \phi \rangle$.

- Propriétés des distributions :
 - (I). linéarité:

$$< S, \phi_1 + \phi_2 > = < S, \phi_1 > + < S, \phi_2 >$$

 $\forall \lambda < S, \lambda \phi > = \lambda < S, \phi >$

(II). continuité:

Si
$$\phi_k \rightarrow \phi$$
 alors $< S, \phi_k > \rightarrow < S, \phi >$.

- Opérations sur les distributions (définitions)
 - (I). Addition de deux distributions :

$$< S + T, \Phi > = < S, \Phi > + < T, \Phi >$$

(II). Multiplication par un scalaire :

$$<\lambda S, \Phi> = < S, \lambda \Phi> = \ \lambda < S, \Phi>$$

(III). Translation d'une distribution:

$$< S(t - a), \Phi(t) > = < S(t), \Phi(t + a) >$$

(IV). Transposition:

$$| \langle S(-t), \Phi(t) \rangle = \langle S(t), \Phi(-t) \rangle$$

(V). Changement d'échelle :

$$\langle S(at), \Phi(t) \rangle = \frac{1}{|a|} \langle S(t), \Phi(\frac{t}{a}) \rangle$$

(VI). Multiplication par une fonction indéfiniment dérivable ψ :

$$<\psi S, \Phi> = < S, \psi \Phi>$$

(VII). Dérivation:

$$\langle S', \Phi \rangle = -\langle S, \Phi' \rangle$$

(VIII). Convolution de deux distributions :

$$| \langle S * T, \Phi \rangle = \langle S(t), \langle T(t'), \Phi(t+t') \rangle \rangle$$

lorsque le produit de convolution existe.