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1 et 4 av. de Bois-Préau, 92852 Rueil-Malmaison - France

X. NING, I. W. SELESNICK
Polytechnic School of Engineering

New York University

19 juin 2015

1 / 21



INTRODUCTION MODELING BEADS ALGORITHM EVALUATION AND RESULTS CONCLUSIONS

The fast way

I Question: where is the string behind the bead?
I Smoothness, sparsity, asymmetry
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Background on background

I Background affects quantitative evaluation/comparison
I In some domains: (instrumental) bias, (seasonal) trend
I In analytical chemistry: drift, continuum, wander, baseline
I Rare cases of parametric modeling
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Background on background
For analytical chemistry data:
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Notations

Morphological decomposition:
y = x + f + w, (y, x, f,w) ∈ (RN)4.

I y: observation
I x: clean series of peaks
I f: baseline
I w: noise

Assumption: in the absence of peaks, the baseline can be
approximately recovered from a noise-corrupted observation
by low-pass filtering

I f̂ = L(y− x̂) (L: low-pass filter)
I formulated as ‖y− ŝ‖2

2 = ‖H(y− x̂)‖2
2

I H = I− L: high-pass filter
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Compound sparse derivative modeling

An estimate x̂ can be obtained (with Di diff. operators) via:

x̂ = arg min
x

{
F(x) =

1
2
‖H(y− x)‖2

2 +

M∑
i=0

λiRi (Dix)
}
.
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Compound sparse derivative modeling

Examples of (smooth) sparsity promoting functions for Ri
I φA

i = |x|
I φB

i =
√
|x|2 + ε

I φC
i = |x| − ε log (|x|+ ε)
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Compound sparse derivative modeling
Take the positivity of chromatogram peaks into account:

x̂ = arg min
x

{
F(x) =

1
2
‖H(y− x)‖2

2

+ λ0

N−1∑
n=0

θε(xn; r) +

M∑
i=1

λi

Ni−1∑
n=0

φ ([Dix]n)
}
.

Start from:

θ(x; r) =

{
x, x > 0
−rx, x < 0
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then majorize it:

g0(x, v) =


1+r
4|v| x

2 + 1−r
2 x + |v|1+r

4 , |v| > ε

1+r
4ε x2 + 1−r

2 x + ε1+r
4 , |v| 6 ε.
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BEADS Algorithm
We now have a majorizer for F

G(x,v) =
1
2
‖H(y− x)‖2

2 + λ0xT[Γ(v)]x

+ λ0bTx +

M∑
i=1

[
λi

2
(Dix)T [Λ(Div)] (Dix)

]
+ c(v).

Minimizing G(x,v) with respect to x yields

x =
[
HTH + 2λ0 Γ(v) +

M∑
i=1

λiDT
i [Λ(Div)] Di

]−1 (
HTHy− λ0b

)
.

with notations

c(v) =
∑

n

[
φ(vn)− vn

2
φ′(vn)

]
.
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BEADS Algorithm

Writing filter H = A−1B ≈ BA−1 (banded matrices) we have

x = AQ−1
(

BTBA−1y− λ0ATb
)

where Q is the banded matrix,

Q = BTB + ATMA,

and M is the banded matrix,

M = 2λ0Γ(v) +

M∑
i=1

λiDT
i [Λ(Div)] Di.
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BEADS Algorithm

Using previous equations, the MM iteration takes the form:

M(k) = 2λ0Γ(x(k)) +

M∑
i=1

λiDT
i
[
Λ(Dix(k))

]
Di.

Q(k) = BTB + ATM(k)A

x(k+1) = A[Q(k)]−1
(

BTBA−1y− λ0ATb
)
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BEADS Algorithm

Input: y, A, B, λi, i = 0, . . . ,M

1. b = BTBA−1y
2. x = y (Initialization)

Repeat

3. [Λi]n,n =
φ′([Dix]n)

[Dix]n
, i = 0, . . . ,M,

4. M =

M∑
i=0

λiDT
i ΛiDi

5. Q = BTB + ATMA

6. x = AQ−1b
Until converged

8. f = y− x− BA−1(y− x)

Output: x, f
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Evaluation 1
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Figure : Simulated chromatograms w/ polynomial+sine baseline.
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Evaluation 1 with Gaussian noise
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Evaluation 2
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Figure : Simulated chromatograms w/ limited power spectrum noise.
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Evaluation 2 with Gaussian noise
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Evaluation 3 with Poisson noise
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Two-dimensional chromatography data 1
Hyphenated, two-dimensional gas chromatography data

Original data
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Two-dimensional chromatography data 2
Hyphenated, two-dimensional gas chromatography data

Original data
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Conclusions and work to come
I BEADS: Baseline Estimation And Denoising. . . Sparsely
I Asymmetric penalties with Majorization-Minimization
I Matlab toolbox: http://lc.cx/beads
I Important pre-processing for image alignment
I Further tests on other analytical chemistry signals for

routine analysis
I gas, liquid or ion chromatography; infrared, Raman,

Nuclear Magnetic Resonance (NMR) spectroscopy; mass
spectrometry

I Use closer to `0 sparse penalties: SOOT or smoothed `1/`2
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