Study on the digitization dual combinatorics and
convex case

Loic Mazo and Etienne Baudrier

ICube-UMR 7357, 300 Bd Sébastien Brant - CS 10413
67412 Illkirch Cedex France

Abstract. The action of a translation on a continuous object before its
digitization generates several digitizations. The dual, introduced by the
authors in a previous paper, stands for these digitizations in function
of the translation parameters. This paper focuses on the combinatorics
of the dual by making a link between the digitization number and the
boundary curve, especially through its dual representation. The convex
case is then studied and a few significant examples are exhibited.

1 Introduction

For a given grid step and a given digitization method, a planar object produces
several digitizations in function of its position on the grid. The object digital
properties and digitally estimated characteristics depend on the obtained digi-
tization. Thereby, this study of the digitization variability is an important issue
in image analysis.

This field has been explored for some geometrical primitives. For instance,
the set of straight segment digitizations in function of the segment slope and
offset is known as the segment preimage and is used for digital straight segment
recognition [2]. Several papers are also dedicated to the study of the generation
and combinatorics of the disc digitization set in function of its radius and cen-
ter position [3,9,13,5,12,11,6-8] and the combinatorics of the strictly convex
sets [4]. In the general case, the digitization set can be seen as the consequence of
a group action on the object. A function, so-called dual, linking the group action
and the produced digitization is used by the authors to study the digitization
set up to a translation, for function graphs in [1] and for planar object in [10].
In the latter case, the dual has been proved to be piecewise constant in function
of the translation. This paper focuses on the dual combinatorics.

Two upper bounds are given for the number of digitizations of a planar
object whose boundary is a Jordan curve. The first one is expressed in terms of
the number of grid cells crossed by the boundary and the second one in terms of
the intersection number when plotting the boundary on the torus R? ] Z 2 The
latter bound is proved to be quadratic in the convex case. Some examples are
provided in order to compare the two upper bounds both in the convex and the
non-convex cases. A conclusion and some perspectives end the paper.



2 Background

Let us consider a connected compact set S in IR? whose boundary is a simple
closed (Jordan) curve I'. Thanks to the Jordan curve theorem, we may assume
a continuous map f: IR? — IR such that I, resp. S, is implicitly defined by

Ir'={f(z)=0|zeR? ,

resp.

S={reR?| f(z) <0} .

We are interested in the variability of the Gauss digitization when the group
of the translations acts on S, that is on the sets (u + S) N Z? u € R% In
this paper, we focus on the combinatorial aspects of this variance. Of course, the
variance has to be understood “up to integer translations”. This is the reason why
we defined in a previous paper [10] the dual by translation of the digitizations
of S as a set-valued function ¢g defined on the torus T = IR?/ZZ* which maps
each point ¢t € T to the digitization, up to integer translations, of u + S where
the vector u is any representative of ¢ in IR?. Let us pick a representative in each
class of T so as to form a connected set M called the structuring element. We
note C' the symmetric of M with respect to the origin: C = —M. The family of
sets p+ C, p € Z?, is a tiling of IR, For instance, we can take M = [0,1)?,
C = (—1,0]%. From now on, to simplify the notations, we confuse ¢ € T’ with its
representative in M and the subsets of ZZ? with their orbits for the action of
the integer translations so we can write pg(t) = (t +S) N Z2. For any point or
set X in IR?, we denote by proj(X) its projection on the quotient space T.

We define the grid boundary B as the set of grid points that lie in the (mor-
phological) dilation of the boundary I" of S by the structuring element M:

B=(r'eM)nz? ,

where & denotes the Minkowski sum. The set B contains all the points of Z?
whose membership to the digitization may change when the set S is shifted by
a vector u € M. Nevertheless, since IR? is connected, M is not open so there
may exist some points in BN S not liable to change, namely those points p in
B for which p + C C S (see Fig. 1). That is why we have in fact to consider
the toggling boundary B as the set of grid points whose membership effectively
“toggle” for some translation by a vector u € M:

B=B\{pecZ?|p+CCS}.

The set S N Z? \ B of the grid points that are in any digitization of u 4 S,
u € M, is called the digitization core.
Finally, for any p € ZZ*, we set

IL,=((-p+I)NnC ,
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Fig.1: (a) Black: a Jordan curve I'; light blue: tiles z + C, z € ZZ?; red disc: a
point p € B (the red square p + C intersects I" — in brown: I, = (p+ C)N T
— and also intersects ZZ2 \ S); blue disc: a point ¢ € B\ B (the blue square
q + C intersects the boundary I' but is included in S); green disc: a point r in
the digitization core which is not in B (the green square r + C' is included in S
and does not intersect I'). (b) Black: a Jordan curve, red: the toggling boundary,
blue: two points that lie in the grid boundary but that cannot “toggle”, green:
the digitization core.

so I, =0 if p ¢ B, and we denote by 1, the indicator function of the set I}, so
1, is not constant iff p € B. Then,

ps(t) = {p e Z° | 1,(~1) =1} .

We proved in [10] that the plot of the curve I' on the torus T, proj(I),
delineates regions on which the dual function g is constant.

Property 1 ([10]). Let S be a compact subset of IR* whose boundary I' is a
Jordan curve. Then,

— the dual g is constant on the connected components of T \ proj(I");
— when M = [0,1)?, putting i = (1,0), j = (0,1), it holds for any p € Z*\ I’
and any z,y € [0,1) that,
o 1,(xi) = limy_1 Lp_j(xi + Aj),
o 1,(yj) = limx—1 Tp—i(yj + ).

In the following section, upper bounds are given for the number of digitiza-
tions up to a translation. The first upper bound is naive. For the second one,
the idea is to link the digitization number to the number of the intersection of
the translated curves I,. Indeed, the dual induces a partition of the torus whose
cells frontiers are arcs of the curve proj(I"). Then, we bound from above the
partition size by counting the number of curve intersections in proj(I’).



3 Contribution

3.1 Bounding up by counting the crossed tiles

Since the grid boundary B contains any integer point whose value may change
when shifting the set S, we have a first, obvious, upper bound on the number

of Gauss digitizations given by 2|B’. As ’B| is also the number of tiles p 4+ C,
p € ZZ%, crossed by the frontier of S, we can state the following proposition.

Proposition 1. The number of Gauss digitizations, up to integer translations,
is upper bounded by 22" where a(l') is the number of tiles crossed by I'.

Generally, the digitization enumeration provided by Prop. 1 includes false
positives and multiple counts. For instance, the grid boundary of a circle with
diameter 1.7 involves 4 to 8 pixels, depending on the grid position, which gives
an upper bound according to Prop. 1 equals to 16, while there exists only 8
digitizations (see Fig 2). Nevertheless, from any set S, it is possible to build
a new set that avoid false positives (but not multiple counts) by replacing the
initial boundary by a family of Hilbert curves (see Appendix B).
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Fig.2: (a) A circle with diameter 1.7 and the four pixels in the toggling boundary
which is equal to the grid boundary: a, b, ¢, d. (b) The (flatten) dual of the
closed disc bounded by the circle. Among the 16 = 2* potential digitizations
provided by the 4-pixels a, b, ¢, d, three of them does not actually appear (0, ac
and bd) and some others appear multiple times (the four singular digitizations,
which are obviously congruent, and the vertical and horizontal pairs which each
appear twice. Eventually, there are only 8 digitizations (and actually the (sewed)
dual is divided into 8 regions).

3.2 Bounding up by counting the intersections

In Sec. 3.2, we assume a parametrization of I'. It induces an order on the points of
the curve I" (for I" is simple) that is used in the proof of the following proposition.



The dual g can be regarded as the projection, on the torus T of a finite

labeled partition of the tile C' (whose cells need not be connected).
this partition is lower bounded by the

infimum of the binary partitions P, associated to the indicator functions 1,
p € B (actually, proj(1,), p € B). Indeed some cells of A\ .y P, need to be
merged whenever the corresponding digitizations are equivalent up to an integer
translation. Then, the next proposition proposes an upper bound on the size
of the partition /\pE‘B P, — and thereby an upper bound to the number of
digitizations — by inductively counting the intersections between the curves I,
p € B. The idea is to count the partition cells created when adding a curve
I',. To do this we count the intersection of I}, with the already added curves.
Nevertheless, these intersections can be with one or more curves and can be a
singleton, . Then, let us define what means intersection
in this context.

Definition 1 is illustrated in Fig. 3.

Definition 1. Let B = {by,--- ,b;,-+ ,by}, n > 1. Let m € [2,n]. Then,

inter, ; = CC (70 (ﬂfbi \ U Fbj))

i€l jeJ
where v € CC([},,) and IUJ =[1,m—1] ,
# inter,, = Z w[| inter. s | where wy = min(|]|,2) .
YECC(Ib,,)
PCIC[1,m—1]

Note that the components of all the inter., ; are two by two disjoint and that
# inter,,, may be infinite.

The set inter, ; stands for the intersection of the curve  with the curves
whose indexes are in a subset I, excluding any other curve I3, whose index is
not in I. The necessity to have all the index subsets comes from the fact that
intersections between multiple curves can occur.

We are now able to state the proposition that relates the number of digiti-
zations and the number of intersections # inter,,.

Proposition 2. The size of the partition /\peB Py is upper bounded by

24 Z # intery, +| CC(I3,,)

m=2

Proof. We give here the sketch of the proof. The complete proof, which is tedious
due to the large configuration space for the intersection set, can be found in the
extended version of the paper [?].

The proposition is proved by induction. For m = 1, the result is obvi-
ous since, for any p € B, P, is a binary partition. Let m > 1. We assume
that the number of cells of the partition /\:’;_11 Py, is upper bounded by 2 +
S, #intery, +| CC(I3,)|. The cells of A*;' 7Py, which are included in one



Fig.3: (a) Blue: the curve I},. (b) Green: [}, (#intery = ‘interpbr{l} ‘ = 4.
(c) Brown: I',, (# inters = |interpb37{1} |+| interr, (23 |+2| interr,, (1,2} | =0+
0+2 = 2. (d) Red: I}, (#intery = |interpb47{1} |—|—2| interr, (1,23} | =2+2=4.

of the two cells of Py, , namely the sets (1, = 0) and (1,,, = 1), stay un-
changed in the partition A", Py,. Conversely, the cells of /\zn;1 Pp, that are
intersected by both (1, = 0) and (1, = 1), which obviously are cells inter-
sected by I3, , are each divided in two new cells. Thereby, the number N, of
new cells is upper bounded by N/ | the number of cells in /\7!11 Py, intersected
by I3, . Besides, the partition /\;’;1 Py, of the tile C' induces a partition Q of
I, , as a subset of C, with N/ cells (these cells of I}, need not be connected).
Then, the idea of the proof is to map each cell of O to its supremum, for the
order induced by the parametrization of I" — namely to the intersection, as
defined in Def. 1 — its supremum belongs to, or to the empty set when no such
intersection exists. Then, though this mapping is not one-to-one, a careful exam-
ination of the different cases permits us to conclude that N/ is upper bounded
by # inter,, +| CC(I},,)|. O

When projecting the partition /\?=1 Py, on the torus T, the cells that touch
the boundary of C' are identified two by two, which decreases the number of cells
in the partition. Unfortunately, it is difficult to count these cells in the general
case. Nevertheless, in the most simple case (each curve crosses the boundary of
C' in two points, all points and cells are distinct), the reader can easily check
that the identification leads to remove the term Y ; | CC(I3,| in Prop. 2.

3.3 The convex case

It seems plain that the structure of the dual should be simpler when the set S is
convex compare to a set with a winding boundary. We could even hope that the
digitizations coincide with the cells of the partition /\pe% I, after sewing the
boundary of the tile C', and with the connected regions of the torus T delineated
by the curve I'. Figure 4 annihilates this hope by exhibiting a convex object and
one of its digitizations whose inverse image by the dual is not connected.
Nevertheless, in this section we show that the structure of the sets inter, ;
is simple when the set S is strictly convex and permits to obtain a quadratic



bound for the complexity of the dual in terms of the grid boundary size (to be
compare to the exponential bound of Prop. 1).

Fig.4: (a) A triangle and its toggling boundary. (b) The dual of the (filled)
triangle. The four colored regions correspond to the same digitization: the hori-
zontal pair. Moreover, the two red regions belong to the same cell of the partition
/\pe% I, the cell associated to the digitization be (these two regions are sepa-
rated by the unique point of the cell abed). The orange region is the cell cd and
the pink region is the cell ae. (c), (d) The configurations of the shifted triangle
in the two red regions. Since they are disconnected, it is not possible to contin-
uously move to one configuration to the other without hurting a black toggling
point. Note that the triangle could be slightly inflated so as to provide a strictly
convex counterexample.

Proposition 3. We assume a convex quadrilateral structuring element M. Let
n= ’%‘ The number of Gauss digitizations of a strictly convex planar object up
to a translation is upper bounded by

An® +4n —6 .



Proof. The proof invokes Lemma 3 which is stated and proved in the appendix.
Let N be the digitization number. Thanks to Prop. 2, we have

N <2+ > #inter,, +| CC(L3,,)] - (1)

m=2

From Lemma 3, we derive that, for any m € [1,n], v € CC(I3},,), i € [1,m — 1],

> |inter, 1| < 2| CC(I3,)] -

JEY
Then,
m—1
# inter,, <2 Z | CC(1y,)] -
k=1
Eventually, Eq (1) turns into
n m-—1 n
N<2+2) Y |col,)|+ > |cc,,)]
m=2 k=1 m=2

<2 <1+i(n—k+1)|00(n,k)| —|CC(Fb1)|>

k=1

It can easily be seen (from Lemma 2 for instance) that, for any convex curve I
and any convex polygon P with ¢ edges, the number of connected arcs in the
intersection I' N P is upper bounded by c. Then, if we assume that the tile C' is
a convex quadrilateral, we straightforwardly obtain the desired bound.

The term 4n? in Prop. 3 comes down to n? for sufficiently high resolution be-
cause each curve I3, will have just one connected component instead of possibly
4 in the general case. Then, the result of Prop. 3 is close to the one in [6] which
states that the number of digitizations of a disc of radius r is asymptotically
47r2 +O(r). As the ratio between the radius r and the size of the grid boundary
is /4 for the disc, our upper bound in function of the radius r of the disc is
asymptotically equivalent to 16/m2r2.

4 Conclusion

We present in this paper two upper bounds on the number of digitizations ob-
tained from all the translated of a continuous object. The first one is expo-
nential in the number of toggling object-boundary pixel and a generic example
reaching this bound is given. The second one is based on the passage from the
dual connected-component count to the curve-intersection count. If the curve is
parametrized, then the count comes down to count some equation solutions. The
second upper bound is then used in the convex case, where digitization number
is shown to be quadratic. An example of a convex object is given where the



set of translation parameter classes corresponding to a given digitization is not
connected.

The perspectives of this work are first to explicit the second upper bound un-
der assumptions less restrictive that the convexity, e.g. bounded curvature; then
to study the combinatorics of the digitization under the rigid transformations
and to propose an algorithm for the digitization generation.

A Convex sets

The proof of Lemma 3 relies on the two following lemmas about convex sets that
seem obvious at the first glance. Nevertheless, since we did not find any result
related to these lemmas in the literature, we provide our own justifications of
the two statements.

Lemma 1 (Chords of convex sets). Let [a,b] be a chord of the boundary I'
of a closed convez set S. If [a,b] € I', then (ab)NS = [a,b] and (ab)NI = {a,b}.

Proof. Since [a,b] € I', the line (ab) does not support S at any point (notion
de supporting half-plane : Berger ou Valentine). So, there exists two supporting
lines of S at a and b that cross the line (ab). Then, (ab) NS is included in [a, b].
Let ¢ € [a,b] N T, ¢ # a. Applying the first part of the proof to the chord [a, ¢,
we derive that (ac) NS C [a, ] and, since b € (ac) NS, we conclude that b = c.

Lemma 2 (Cuts of convex sets). Let a, b be two points of the boundary I of
a closed convex set S. If [a,b] € I, then the open curve segments of I, o1, o2,
whose extremities are a and b are included in distinct open half-planes bounded
by the line (ab).

Proof. Let H- and H" be the two open half-planes bounded by (ab). Since
l[a,b] € I', from Lemma 1, (ab) N I" = {a,b}. Thereby, by connectivity, either
o1 CH  oroy C H and 0o C H™ or oo C H*. Suppose for instance that
01 C H™ and 0o C H™. Then, S, which is the connected subset of IR? bounded
by 01Uo2U{a, b} (citeJordan) is included in H~U(ab) and, since (ab)NS = [a, b]
from Lemma 1, [a,b] C I': contradiction.

Lemma 3 (Intersection of two segments of a convex curve). Let I" be
a Jordan curve whose interior is convex. Let I't and I'y two disjoint (closed)
segments/arcs of the curve I and T a vector of IR2. Then the intersection of Iy
and T + Iy is composed of none, one, two points or a line segment.

Proof. Let p, ¢ be two distinct points in It N (7 + %) if such a pair exists.
We denote by X the open segment of Iy between p and ¢. Alike, Y5 is the
open segment of I'; between —7 + p and —7 + ¢. We set ¥; = X; U {p, ¢} and
Yy = Yy U{p, q}. Firstly, we prove that X; U (7 + X) is a straight line segment
whenever it contains more than two points.

First case: X1 U (7 + X3) C (pq). Then, since X; and X5 are connected and

I is simple, X1 = X5 = [p, q|.
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Second case: 3z € (X1U(7+ %))\ (pq). For instance, we assume z € X1\ (pq).
By Lemma 2, >y = I' N Hy, where H; is the open half-plane bounded by the
line (pq) and containing z, and —7 + p is in IR? \ H;. Then, it can easily be seen
that —7 + H; is the open half-plane bounded by the line joining —7 + p and
—7-+¢q and including p. Thanks to Lemma 2, we derive that X5 does not intersect
—7 + H;. Thus, 7 4+ X5 does not intersect H;. In particular, (7 + Xo) N X = 0.
This achieves the first part of the proof.

Now, let r be a point in I3 N(7+1I%) which is not in X (if such a point exists).
For instance, p belongs to the segment of I'; between ¢ and r. Then, the first part
of the proof, applied to the points ¢ and r, implies that Iy N (7 + I) includes
the segments [q, r].We straightforwardly concludes that either the intersection of
Iy and 7 + I is composed of at most two points or it is a line segment.

B Examples and counterexamples

B.1 Building examples without proper congruent digitizations in
the image of the dual

Let u and v be two vectors in [0, 1)2 such that the sets u+S and v+S have distinct
but congruent digitizations. Then, there exists an integer vector w, w # 0, such
that (u+S)NZ* =w+ ((v+S)NZ?) = (w+v+8S)NZ>. Let p be a point in
the digitization core. Then, p € (u+ S)N Z? and p € (v + S) N ZZ*. Therefore,
w4p e (ut+S)NZ* and —w+p € (v+ S) N Z?, which can be rewritten as
p€ ((~w+u)+S)NZ? and p € ((w+v) +S) N Z>. Then, at least one of the
vector w + v or —w + u has one of its coordinates which is negative. We derive
that if there exists a point in the digitization core which is maximal in S for
both coordinates then there is no proper congruent digitizations in the dual. An
example with such a maximal point in the digitization core is provided in Fig. 6.



B.2 Building toric partitions in one-to-one correspondence with the
power set of the toggling boundary

In this section, we exhibit a way to modify the boundary of the set S in order
to ensure that any set in the power set of the toggling boundary is represented
in the dual. To do so, we move along B, ordered in the same way as in Def. 1.
Then, a new boundary is built thanks to the approximations of the Hilbert
filling curve: the segment of I' intersecting the n-th cell of B is replaced by a
n-th approximation of the Hilbert filling curve H,, (extended at its extremities
to ensure the continuity of the boundary): see Fig. 6. We consider the family

Fig.6: The boundary of the set S depicted in the figure is obtained by connecting
n-th approximations of the Hilbert filling curve, 0 < n < 4. Red square and red
disc: digitization core. Red circle: the five points in the toggling boundary. The
red disc is both in the grid boundary and in the digitization core. Furthermore, it
is maximal for both coordinates which ensures that there is no proper congruent
digitizations in the image of the dual. The set S has 2° digitizations.

of binary partitions P,, of the unit square that comes with the curves H,,. We
claim that each curve H, ;1 crosses each cell of the partition /\?:1 P; so that
the size of the final torus partition is 2V where N is the cardinal of the toggling
boundary. To justify our claim, we divide the unit square in a family of 2™ x 2"
small squares (K[';)1<i jieg2n (1 > 0) whose sizes are 5 X 3. It can be seen that
on the one hand, the Hilbert curve H,, passes through the center of each of the

squares K'; and, on the other hand, does not intersect any of the interior of the
squares KZ]-H (Hp is just the center of the unit square). Thereby, the partition
Ai_, P; is coarser than the partition {KZL;rl | 1 <i,j <n} (the boundaries of
the squares K{fj are assigned to the cells so as to coincide with P,,). Since H,11



passes through the center of each of the squares Kgf;fl, it passes in each cell of
A/, P; which gives the claim.

Thanks We thank Renan Lauretti for his idea to link the dual regions to the
dual region border crossings in his study of the function graph dual.
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