Semi-automatic liver tumor segmentation in DCE-CT scans using random forests and supervoxels P.-H. Conze¹, F. Rousseau², V. Noblet¹, F. Heitz¹, R. Memeo³ and P. Pessaux³ conze@unistra.fr

¹ ICube, University of Strasbourg, CNRS, Fédération de Médecine Translationnelle de Strasbourg, France ² Institut Mines-Télécom, Télécom Bretagne, INSERM, LATIM, Brest, France ³ Pôle Hépato-Digestif, Institut Hospitalo-Universitaire de Strasbourg, France

Context

Evaluation of pre-operative locoregional treatments (PLT) response for hepato-cellular carcinoma (HCC):

- PLT downstage HCC tumors by necrosis
- standard scores (RECIST, EASL or WHO) do not provide satisfactory results
- tumor necrosis (TN) rate provides more

Contributions

Proposed framework: multi-phase cluster-wise random forest

(1) Over-segmentation

(2) Interaction

significant correlation with survival rates

To overcome inter-expert variability induced by visual assessment, we propose a semi-automatic method to estimate **TN** rate from dynamic contrast-enhanced (DCE) CT scans:

- requires the segmentation of healthy liver, tumoral active and necrotic areas
- DCE images provide discriminative information: HCC is characterized by arterial enhancement followed by venous washout in response to contrast agent injection

State-of-the-art

Unsupervised multi-phase methods

- liver tumor segmentation through level sets, k-means or graph cut

Liver volume decomposed into a set of K_R 3D SLIC supervoxels Training 3D supervoxel selection $m{R} = \{m{r}_i\}_{i \in \{1,...,K_R\}}$ $S = \{r_j, c(r_j)\}_{j \in \{1,...,K_R\}}$

③ Training

Random forest [2] optimized using S to obtain a voxel/label mapping model

From voxels to semantic regions

(4) Prediction

(5) TN rate estimation

Prediction of label $c(\mathbf{r})$ assigned to each 3D supervoxel $\boldsymbol{r} \in \boldsymbol{R} \backslash \boldsymbol{S}$

- Random forest performed on 3D supervoxels obtained with SLIC [1]:
 - introduces spatial consistency at a large spatial extent
 - reduces interaction efforts: the practitioner has only to label a subset of \boldsymbol{R} instead of brushing strokes on many voxels

- multi-phase voxel-wise features: capture the dynamic in response to agent injection

User interaction appears necessary since arterial enhancement and venous washout depend on contrast agent kinetic and injection protocol.

Supervised single-phase methods

- tumor extraction relying on supervised ensemble learning
- spatial features with limited context
- voxel-wise: requires a significant amount of user interaction

Exploiting multi-phase input data

Multi-phase cluster-wise features assigned to supervoxels:

Related to	Features	Nb
Intensity	mean intensity including $BL + std dev$.	4+4
Gradient	mean gradient magnitude + std dev.	4+4
Multi-phase	peak enhancement (PE)	1
	inter-phase diff. $\Delta_{EV/AR}, \Delta_{LV/EV}$	2
	area under enhancement curve (AUC)	1

Multi-phase features discriminate supervoxels based on their own arterial enhancement and venous washout

Results

7 examinations with 6 equally reparted 2D axial slices labeled by 4 experts in hepato-digestive surgery whose annotations are fused using STAPLE [3]. We comparatively assess single-phase voxelwise (SpVx), single-phase cluster-wise (SpCl), multi-phase voxel-wise (MpVx) and the proposed *multi-phase cluster-wise* (MpCl) random forest (RF).

methods	SpVx-RF	SpCl-RF	MpVx-RF	MpCl-RF
TN rate error	6.40 ± 2.85	9.13 ± 4.78	6.60 ± 3.32	5.26 ± 3.90
DICE _{activ}	54.3 ± 17.2	65.8 ± 15.3	65.5 ± 12.4	74.4 ± 12.6
DICEnecro	65.0 ± 21.6	63.8 ± 25.8	71.8 ± 17.6	$\textbf{71.9} \pm 19.5$
DICEprcm	80.5 ± 13.1	89.7 ± 4.90	87.4 ± 9.00	93.3 ± 3.08

Further work

- multi-examination learning to make our strategy becoming fully automatic
- longitudinal liver tumor study
- extension to other tumor types, organs and modalities

Results confirm the benefits of exploiting dynamic information at a cluster spatial extent

Acknowledgements

This work received the financial support from Fondation Arc, www.fondation-arc.org.

References

- Radhakrishna A. et al., SLIC superpixels compared to state-of-the-art superpixel methods. *IEEE Trans*actions on Pattern Analysis and Machine Intelligence, 34(11):2274–2282, 2012.
- Breiman L. Random Forests. Machine learning, 45(1):5-32, 2001.
- Simon K.W. et al., Simultaneous truth and performance level estimation (STAPLE). IEEE Transactions on Medical Imaging, 23(7):903–921, 2004.