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Subject
Detecting the central line (or skeleton) of tubular objects is an important issue for many projects in a
wide range of fields, from medical imaging to geometric modeling for animation, not forgetting forestry
agronomy, industrial quality control and fluid flow simulation. In all these fields, the main problem lies in
managing branching zones, whether this involves detecting, segmenting or modeling them. The challenge
is even greater when the object is thin, or the underlying data incomplete, noisy or inhomogeneous.

Previous work has developed a method of centerline detection based on a point cloud and the es-
timation of normals at these points [1]. The main advantages of this approach lie in its robustness to
incomplete data and in its genericity, theoretically allowing it to be applied to any type of object for which
a field of normals can be estimated. The basic idea is to immerse the continuous object in a discrete
space and then calculate a probability map based on the principle of accumulating surface normals. This
method has been used, for example, to calculate the skeleton of vascular networks in 3D cerebral MRI
angiography images (see Figure 1).

However, when used on discrete data such as an image, this method has two drawbacks. On the one
hand, it requires a binary image for the estimation of normals. This binarization step can be based on
a filtering and/or segmentation method, for example, and can be complex to implement. On the other
hand, the accuracy of the skeleton obtained is linked to the image resolution: in the case of thin objects
whose thickness is close to the resolution limit (small vessels, for example), the skeleton obtained may
suffer from certain defects.
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Figure 1: Detection of the centerline of a 3D MRI brain angiogram obtained by an approach based on
the accumulation of normals.

Figure 2: Segmentation of a cerebral vascular network in MRI imaging [11]. Left: automatic segmentation
using convolutional neural networks. Right: ground truth. Automatic segmentation still suffers from
certain shortcomings (disconnections, missing parts, etc.).

The first objective of this thesis is to develop a method for centerline detection of tubular objects that
alleviates the two previous problems. To extend the method to the calculation of skeletons in grayscale
images, a method for estimating normals dedicated to this type of data will be developed. In order to
calculate a skeleton with an accuracy greater than the image resolution, super-resolution methods, based
in particular on deep learning, could be considered [2]. This research could also draw on the work of
Hespen et al. [3], which enables sub-pixel accuracy to be achieved in vessel wall thickness measurement.

Finally, this work will be integrated into a methodology for segmenting vascular networks in 3D
cerebral MRI developed by the IMAGeS team.

In this context, the structures of interest present morphological (size, shape), spatial (positions, ori-
entation) and topological (branching variability) properties, which make reliable image annotation par-
ticularly tricky, and induce significantly greater variations than for other structures. For such objects,
deep learning approaches still suffer from a lack of robustness (see Figure 2).

With this in mind, several recent works propose methods for incorporating topological-type constraints
into neural networks [4, 5, 6, 7, 8] or modeling shape a priori or anatomical constraints [9, 10].

The final aim of this work is to obtain, from a 3D MRI angiographic image, a model of the vessels
based on the calculation of their central line (or skeleton) and associated radii. Deep learning approaches
will be able to infer this information directly, without the need for prior segmentation.
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