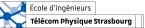


Convolution

Ouvrages:

→ Digital Image Processing, 3rd Ed., Rafael C. Gonzalez and Richard E. Woods, Prentice Hall. 2008.

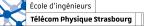
Cours:


- → Vincent Mazet, cours "Outils fondamentaux pour le traitement d'image", http://miv.u-strasbg.fr/mazet/ofti
- → Vincent Noblet, cours "Traitement d'images" TICS2A, http://icube-miv.unistra.fr/fr/index.php/Traitement_d'images_TICS2A

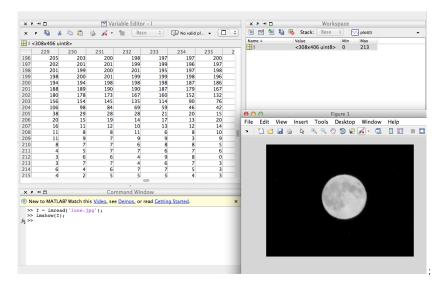
Plan du chapitre

1. Formation d'une image numérique

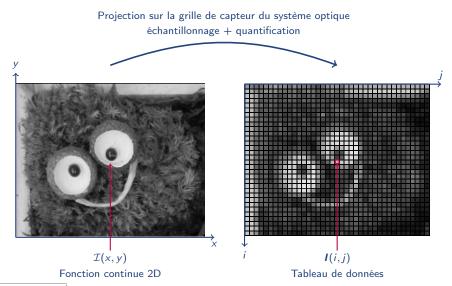
- 1.1 Image numérique
- 1.2 Echantillonnage
- 1.3 Quantification
- 2. Opérations sur les images
- 3. Outil statistique sur les intensités : l'histogramme
- 4. Convolution
- 5. Transformée de Fourier
- 6. Filtrage



Notations:


- → Scène observée = image analogique = fonction continue $\mathcal{I}(x,y)$, $x,y \in \mathbb{R}$.
- \rightarrow Image numérique de la scène = fonction discrète I(i,j), $i,j \in \mathbb{N}$.

Transformation image analogique \rightarrow image numérique :


Image numérique - Manipulation avec Matlab

Echantillonnage

Image numérique

256 niveaux de gris

16 niveaux de gris

4 niveaux de gris

256 niveaux de gris

16 niveaux de gris

4 niveaux de gris

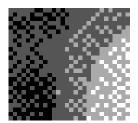
256 niveaux de gris

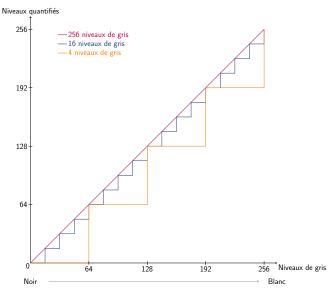
16 niveaux de gris

4 niveaux de gris

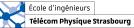


256 niveaux de gris


16 niveaux de gris



4 niveaux de gris



Plan du chapitre

- 2. Opérations sur les images
- 2.1 Addition
- Soustraction
- 2.3 Multiplication (et division)
- 4. Convolution

Addition

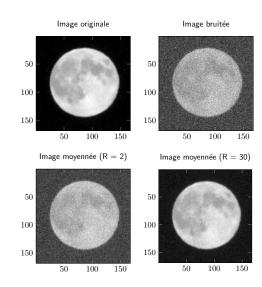
Addition

Soient I_1 et I_2 deux images de taille $N \times M$ dont les intensités sont codées sur K bits (soient 2^K niveaux de gris), on définit la somme de deux images pixel par pixel :

$$\forall i, j \in [0, N-1] \times [0, M-1], \quad I_{\Sigma}(i, j) = \min (I_{1}(i, j) + I_{2}(i, j), 2^{K} - 1)$$

→ Selon l'objectif visé, la saturation des nouvelles intensités n'est pas forcément nécessaire.

Commande Matlab


- » I = min(I1 + I2, 2^K-1); % addition avec saturation
- » I = I1 + I2; % addition sans saturation

Addition - Réduction de bruit par moyennage

On suppose qu'on dispose de Rimages bruitées de la Lune.

- → En moyennant les images bruitées, on effectue une opération de débruitage!
- → Plus on somme d'images, plus on débruite.

Soustraction

Soustraction

Soient I_1 et I_2 deux images de taille $N \times M$ dont les intensités sont codées sur K bits (soient 2^K niveaux de gris), on définit la différence de deux images pixel par pixel :

$$\forall i, j \in [0, N-1] \times [0, M-1], \quad I^{-}(i, j) = \max(I_{1}(i, j) - I_{2}(i, j), 0)$$

→ Selon l'objectif visé, la saturation des nouvelles intensités n'est pas forcément nécessaire.

Commande Matlab

- » I = max(I1 I2, 0); % soustraction avec saturation
- » I = I1 I2; % soustraction sans saturation

Soustraction - Détection de changement

Multiplication (et division)

Multiplication par une constante

Soit I une image de taille $N \times M$ dont les intensités sont codées sur K bits (soient 2^K niveaux de gris), on définit la multiplication par une constante α pixel par pixel :

$$\forall i,j \in \llbracket 0,N-1 \rrbracket \times \llbracket 0,M-1 \rrbracket, \quad \alpha I(i,j) = \min \left(\alpha I(i,j), 2^K - 1 \right)$$

Commande Matlab

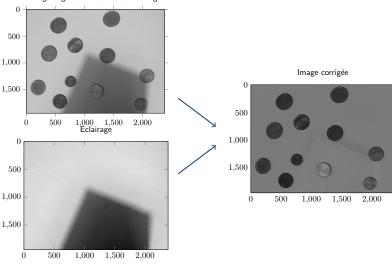
- » I = min(alpha * I, 2^K-1); % multiplication avec saturation
 »
 » I = min(alpha .* I, 2^K-1); % multiplication pixel par pixel avec saturation
 - \rightarrow La division par une constante α se définit de la même facon.

Multiplication par une constante - Amélioration du contraste

Histogramme

Multiplication de deux images

Soient I_1 et I_2 deux images de taille $N \times M$ dont les intensités sont codées sur K bits (soient 2^K niveaux de gris), on définit la multiplication des deux images pixel par pixel :

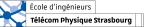

$$\forall i, j \in [0, N-1] \times [0, M-1], \quad I(i,j) = I_1(i,j) \times I_2(i,j)$$

→ Opération matricielle différente!

Commande Matlab

- M = M1 * M2 :% multiplication matricielle
- » I = I1 .* I2: % multiplication de deux images pixel par pixel
 - → La division de deux images se définit de la même façon.

Division - Correction d'éclairage Image originale avec défaut d'eclairage



Permet d'avoir un fond uniforme, \rightarrow utile pour la segmentation/le seuillage.

Plan du chapitre

- 3. Outil statistique sur les intensités : l'histogramme
- Définition
- 3.2 Contraste
- 3.3 Modification d'histogramme
- 4. Convolution

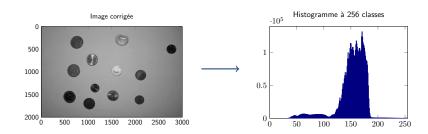
Définition

Qu'est-ce qu'un histogramme

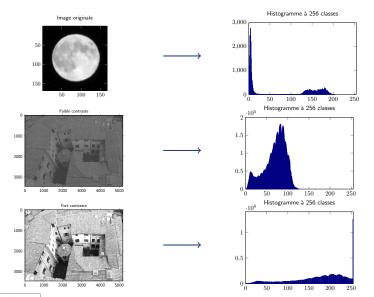
L'histogramme donne la fréquence d'apparition des niveaux de gris dans l'image, il est défini par la fonction discrète :

$$h(r) = n_r$$

où n_r est le nombres de pixels ayant le niveau de gris r.


Définition

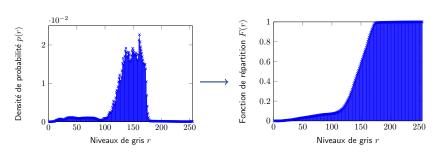
Qu'est-ce qu'un histogramme

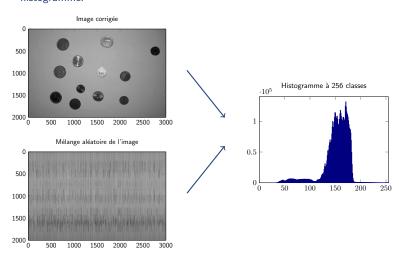

L'histogramme donne la fréquence d'apparition des niveaux de gris dans l'image, il est défini par la fonction discrète :

$$h(r) = n_r$$

où n_r est le nombres de pixels ayant le niveau de gris r.

Exemples d'histogramme




Il peut être interprété comme une densité de probabilité (discrète) des niveaux de gris si les effectifs sont normalisés (par le nombre de pixels) :

Histogramme

$$p(r) = \frac{n_r}{N \times M}$$

Donne une information globale sur les intensités de l'image, mais on perd l'information spatiale : deux images très différentes peuvent avoir le même histogramme.

Contraste : définitions

Contraste

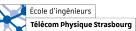
Il existe plusieurs définitions du contraste :

→ Ecart-type des niveaux de gris

$$C_1 = \sqrt{\frac{1}{M \times N} \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} (I(i,j) - \bar{I})^2}$$

où \overline{I} est la moyenne de l'image.

→ Variations entre les intensités maximale et minimale de l'image

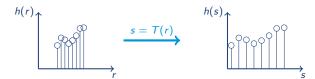

$$C_2 = \frac{\max\limits_{i,j}(\boldsymbol{I}(i,j)) - \min\limits_{i,j}(\boldsymbol{I}(i,j))}{\max\limits_{i,j}(\boldsymbol{I}(i,j)) + \min\limits_{i,j}(\boldsymbol{I}(i,j))}$$

Convolution

diffication diffistograffiffe

 $\textbf{Comment am\'eliorer une image?} \ \to \ \text{en am\'eliorant le contraste}.$

 $\mbox{\bf Id\'{e}}$: la multiplication de l'image par une constante $\alpha>1,$ mais phénomène de saturation.


Modification d'histogramme

Comment améliorer une image? \rightarrow en améliorant le contraste.

Idée : la multiplication de l'image par une constante $\alpha > 1$, mais phénomène de saturation.

Histogramme

Mieux: Trouver une fonction T agissant sur les niveaux de gris r, et donc sur l'histogramme.

Modification d'histogramme

Comment améliorer une image? \rightarrow en améliorant le contraste.

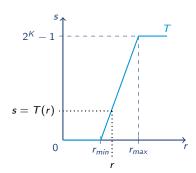
Idée : la multiplication de l'image par une constante $\alpha > 1$, mais phénomène de saturation.

Histogramme

00000000000000000

Mieux: Trouver une fonction T agissant sur les niveaux de gris r, et donc sur l'histogramme.

- → Extension linéaire de la dynamique de l'histogramme (étalement).
- → Fonctions sur les intensité pour la correction de contraste.
- → Égalisation d'histogramme.

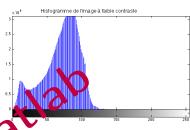

Convolution

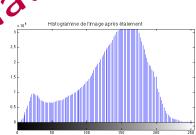
Étalement d'histogramme

ightarrow On étire la dynamique en répartissant les niveaux de gris entre 0 et $2^{\mathcal{K}}-1$:

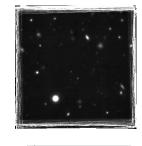
$$s = T(r) = \frac{2^{K} - 1}{r_{max} - r_{min}} \times (r - r_{min})$$

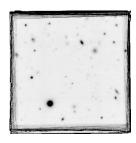
où r_{min} et r_{max} sont les niveaux de gris minimal et maximal présent dans l'image originale.

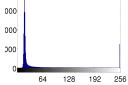

Histogramme

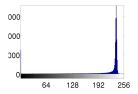

000000000000000

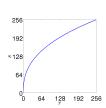
Étalement d'histogramme - Exemple


Image après étalement de l'histogramme

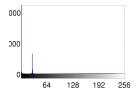


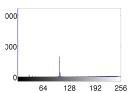

Correction de contraste - Négatif

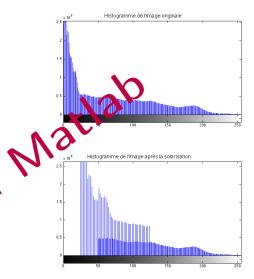


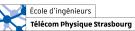




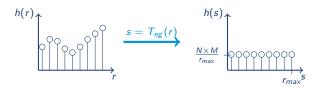

Correction de contraste - Gamma





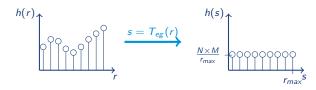


Correction de contraste - Fonctions linéaires par morceaux

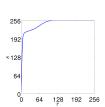


Égalisation d'histogramme

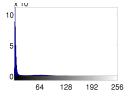
L'égalisation d'histogramme est une transformation T_{eg} qui permet de répartir équitablement les niveaux de gris sur toute la plage de niveaux de gris disponibles (afin d'obtenir un histogramme plat).


Il permet donc d'augmenter le contraste.

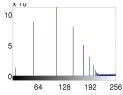
Égalisation d'histogramme

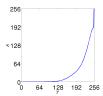

L'égalisation d'histogramme est une transformation T_{eg} qui permet de répartir équitablement les niveaux de gris sur toute la plage de niveaux de gris disponibles (afin d'obtenir un histogramme plat).

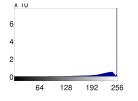
Il permet donc d'augmenter le contraste.

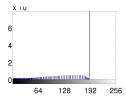


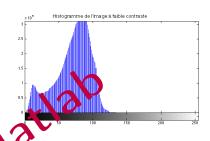
→ dans la pratique on n'a pas un histogramme parfaitement plat.

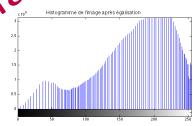

Égalisation d'histogramme - Image sousexposée





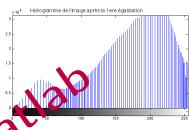

Égalisation d'histogramme – Image surexposée

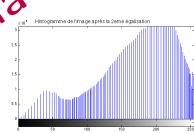


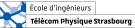

Histogramme

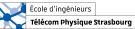
000000000000000

École d'ingénieurs


Égalisation d'histogramme – Image déjà contrastée


Histogramme




Plan du chapitre

- 1. Formation d'une image numérique
- 2. Opérations sur les images
- 3. Outil statistique sur les intensités : l'histogramme
- 4. Convolution
- 5. Transformée de Fourier
- 6. Filtrage

Convolution

- 1. Formation d'une image numérique
- 2. Opérations sur les images
- 3. Outil statistique sur les intensités : l'histogramme
- 4. Convolution
- 5. Transformée de Fourier
- 6. Filtrage

Plan du chapitre

- 4. Convolution
- 6. Filtrage

A suivre ...

